Skip to main content
Log in

Entropy, volume growth and SRB measures for Banach space mappings

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider \(C^2\) Fréchet differentiable mappings of Banach spaces leaving invariant compactly supported Borel probability measures, and study the relation between entropy and volume growth for a natural notion of volume defined on finite dimensional subspaces. SRB measures are characterized as exactly those measures for which entropy is equal to volume growth on unstable manifolds, equivalently the sum of positive Lyapunov exponents of the map. In addition to numerous difficulties incurred by our infinite-dimensional setting, a crucial aspect to the proof is the technical point that the volume elements induced on unstable manifolds are regular enough to permit distortion control of iterated determinant functions. The results here generalize previously known results for diffeomorphisms of finite dimensional Riemannian manifolds, and are applicable to dynamical systems defined by large classes of dissipative parabolic PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case when \((f, \mu ; df)\) does not have zero exponents, the uniform norm

    $$\begin{aligned} \Vert h\Vert _{z, \infty } = \sup _{v \in \widetilde{B}^u_z(\delta l(z)^{-1})} |h(v)|_z' \end{aligned}$$

    is often used when stating contraction estimates for the graph transform.

  2. Since \(|f^{-n}x-f^{-n}y| \rightarrow 0\) exponentially as \(n \rightarrow \infty \), and the tangent spaces of \(f^{-n}x\) and \(f^{-n}y\) to \(W^u_{f^{-n}x}\) converge exponentially as well, it follows that backward time Lyapunov exponents for \(y \in W^u_x\) exist are defined and are identical to those at x, with \(E^u_y\) being the tangent space to \(W^u_x\) at y.

References

  1. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Courier Corporation, North Chelmsford (1993)

    MATH  Google Scholar 

  2. Barreira, L., Pesin, Y.: Smooth ergodic theory and nonuniformly hyperbolic dynamics. In: Handbook of Dynamical Systems, vol. 1, pp. 57–263 (2006)

  3. Blumenthal, A.: A volume-based approach to the multiplicative ergodic theorem on banach spaces (2015). arXiv:1502.06554

  4. Bollobas, B.: Linear Analysis, an Introductory Course. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  5. Busemann, H.: The geometry of finsler spaces. Bull. Am. Math. Soc. 56(1), 5–16 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  7. Chang, J.T., Pollard, D.: Conditioning as disintegration. Statistica Neerlandica 51(3), 287–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Modern Phys. 57(3), 617 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Froyland, G., Lloyd, S., Quas, A.: A semi-invertible oseledets theorem with applications to transfer operator cocycles (2010). arXiv:1001.5313

  10. González-Tokman, C., Quas, A.: A semi-invertible operator oseledets theorem. Ergodic Theory Dynam. Syst. 1–43 (2011)

  11. González-Tokman, C., Quas, A.: A concise proof of the multiplicative ergodic theorem on banach spaces (2014). arXiv:1406.1955

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  13. Hirsch, M.W., Shub, M., Pugh, C.C.: Invariant Manifolds. Springer, Berlin (1977)

  14. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

  15. Kober, H.: A theorem on banach spaces. Compositio Mathematica 7, 135–140 (1940)

    MathSciNet  MATH  Google Scholar 

  16. Kupka, J., Prikry, K.: The measurability of uncountable unions. Am. Math. Month. 85–97 (1984)

  17. Ledrappier, F.: Propriétés ergodiques des mesures de sinai. Publications Mathématiques de l’IHÉS 59(1), 163–188 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ledrappier, F., Strelcyn, J.M.: A proof of the estimation from below in pesin’s entropy formula. Ergodic Theory Dynam. Syst. 2(02), 203–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms, part I: characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 509–539 (1985)

  20. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms, part ii: relations between entropy, exponents and dimension. Ann. Math. 122(3), 540–574 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Z., Shu, L.: The metric entropy of random dynamical systems in a hilbert space: characterization of invariant measures satisfying pesin’s entropy formula. Discrete Contin. Dynam. Syst. 33(9), 4123–4155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z., Shu, L.: The metric entropy of random dynamical systems in a banach space: Ruelle inequality. Ergodic Theory Dynam. Syst. 34, 1–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lian, Z., Lu, K.: Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space. American Mathematical Society, USA (2010)

  24. Lian, Z., Young, L.-S.: Lyapunov exponents, periodic orbits and horseshoes for mappings of Hilbert spaces. Annales Henri Poincaré 12(6), 1081–1108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lian, Z., Young, L.-S.: Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces. J. Am. Math. Soc. 25(3), 637–665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lian, Z., Young, L.-S., Zeng, C.: Absolute continuity of stable foliations for systems on banach spaces. J. Differ. Equ. 254(1), 283–308 (2013)

  27. Lu, K., Wang, Q., Young, L.-S.: Strange Attractors for Periodically Forced Parabolic Equations, vol. 224. American Mathematical Society, USA (2013)

  28. Mañé, R.: On the dimension of the compact invariant sets of certain non-linear maps. In: Dynamical Systems and Turbulence, Warwick, 1980, pp. 230–242. Springer, Berlin (1981)

  29. Mañé, Ricardo: A proof of pesins formula. Ergodic Theory Dynam. Syst. 1(1), 95–102 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mañé, R.: Lyapounov exponents and stable manifolds for compact transformations. In: Geometric Dynamics, pp. 522–577. Springer, Berlin (1983)

  31. Nussbaum, R.D.: The radius of the essential spectrum. Duke Math. J. 37(3), 473–478 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pesin, Y.B.: Characteristic lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–114 (1977)

  33. Rokhlin, V.A.: On the fundamental ideas of measure theory. Matematicheskii Sbornik 67(1), 107–150 (1949)

  34. Rokhlin, V.A.: Lectures on the entropy theory of measure-preserving transformations. Russ. Math. Surv. 22(5), 1–52 (1967)

  35. Ruelle, D.: An inequality for the entropy of differentiable maps. Bull. Braz. Math. Soc. 9(1), 83–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ruelle, D.: Characteristic exponents and invariant manifolds in Hilbert space. Ann. Math. 243–290 (1982)

  37. Ruelle, D.: The thermodynamic formalism for expanding maps. Commun. Math. Phys. 125(2), 239–262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rund, H.: The Differential Geometry of Finsler Spaces. Springer, Berlin (1959)

  39. Schechter, M.: Principles of Functional Analysis. American Mathematical Society, USA (1973)

  40. Thieullen, P.: Fibrés dynamiques asymptotiquement compacts exposants de lyapounov. entropie. dimension. In: Annales de l’institut Henri Poincaré (C) Analyse non linéaire, vol. 4, pp. 49–97. Gauthier-Villars, Paris (1987)

  41. Walters, P.: A dynamical proof of the multiplicative ergodic theorem. Trans. Am. Math. Soc. 335(1), 245–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1991)

  43. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 585–650 (1998)

  44. Young, Lai-Sang: Mathematical theory of Lyapunov exponents. J. Phys. A Math. Theor. 46(25), 254001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Sang Young.

Additional information

L.-S. Young was supported in part by NSF Grant DMS-1363161.

Appendix

Appendix

Recall that the hypothesis of Lemma 3.3 are

$$\begin{aligned} (*) \quad E, E', F \in \mathcal {G}(\mathcal {B}), \quad \mathcal {B}= E \oplus F, \quad \text{ and } \quad d_H(E, E') < |\pi _{E //F}|^{-1}. \end{aligned}$$

Let us write \(d(\cdot , \cdot )\) instead of \(d_H(\cdot , \cdot )\) for simplicity.

Proof of Lemma 3.3

To prove \(\mathcal {B}= E' \oplus F \), we first show \(E' \cap F = \{0\}\). If not, pick \(e' \in E' \cap F\) with \(|e'|=1\). Since \(d(e', S_E) \le d(E, E') < |\pi _{E //F}|^{-1}\), there exists \(e \in E\) with \(|e|=1\) such that \(|e-e'| < |\pi _{E //F}|^{-1}\). This is incompatible with

$$\begin{aligned} 1 = |e| = |\pi _{E //F} e| = |\pi _{E //F} (e - e')| \le |\pi _{E //F}| \cdot |e - e'| < 1. \end{aligned}$$

Next, we claim that \(E' \oplus F\) is closed. It will suffice to show that there exists \(A > 0\) such that for any \(e' \in E', f \in F\), we have

$$\begin{aligned} |e'| \le A |e' + f|. \end{aligned}$$
(37)

This is known as the Kober criterion [15]. Indeed, if (37) holds and \(x_n = e'_n + f_n\) is Cauchy, then \(e_n'\) and \(f_n\) individually are Cauchy, and thus converge to some \(e' \in E', f \in F\) respectively, hence \(x_n \rightarrow x := e' + f \in E' + F\). To prove (37), pick arbitrary \(e' \in E'\) and \(f \in F\), and fix \(c>1\) with \(c d(E,E')< |\pi _{E //F}|^{-1}\). As before, let \(e \in E\) be such that \(|e| = |e'|\) and \(|e - e'| \le |e'| c d(E, E')\). Then

$$\begin{aligned} |e' + f| \ge |e + f| - |e - e'| \ge |e'| (|\pi _{E //F}|^{-1} - c d(E, E')) =: A^{-1} |e'|. \end{aligned}$$

To finish, assume for the sake of contradiction that \(E' \oplus F \ne \mathcal {B}\). By Assumption (ii), there exist \(c_1<1<c_2 \) such that \(c_2 d(E,E') |\pi _{E //F}| < c_1\). Since \(E' \oplus F\) is closed, the Riesz Lemma [39] asserts that there exists \(x \in \mathcal {B}\) with \(|x|=1\) such that \(|x - (e' + f)| \ge c_1\) for all \(e' \in E', f \in F\). On the other hand, since \(\mathcal {B}= E \oplus F\), we have that \(x = e + f\) for some \(e \in E, f \in F\); notice that \(|e| \le |\pi _{E //F}|\). But there exists \(e' \in E\) with \(|e'|=|e|\) and \(|e-e'| \le c_2 |e| d(E,E')\), and for such an \(e'\),

$$\begin{aligned} |x - (e' + f)| = |e - e'| \le |e| c_2 d(E, E') < c_1, \end{aligned}$$

contradicting our choice of x.

Lemma A.1. Assume (*). Then

  1. (i)
    $$\begin{aligned} |\pi _{E' //F}| \le \frac{|\pi _{E //F}|}{1 - |\pi _{E //F}| d(E, E')}, \end{aligned}$$
  2. (ii)
    $$\begin{aligned} |\pi _{F //E'}|_E| \le 2 |\pi _{E' //F}| d(E, E') \, . \end{aligned}$$

Proof

Since \(\mathcal {B}= E\oplus F = E'\oplus F\), (i) above is equivalent to

$$\begin{aligned} \alpha (E, F) \le d(E, E') + \alpha (E', F) \end{aligned}$$
(38)

by the formula \(\alpha (E, F) = |\pi _{E //F}|^{-1}\) from Sect. 3.1.2. To estimate \(\alpha (E', F)\) from below, we let \(e' \in E'\) with \(|e'| = 1\) and \(f \in F\) be arbitrary. For \(c > 1\), we let \(e \in E, |e| = 1\) be such that \(|e - e'| \le c d(E, E')\). Then,

$$\begin{aligned} |e' - f| \ge |e - f| - |e' - e| \ge \alpha (E, F) - c d(E, E'). \end{aligned}$$

But \(e', f\) were arbitrary and so our formula follows on taking \(c \rightarrow 1\).

To prove (ii), fix \(e \in E, |e| = 1\). Then for \(c > 1\) arbitrarily close to 1, let \(e' \in E', |e'| = 1\) be such that \(|e - e'| \le c d(E, E')\). Then

$$\begin{aligned} |\pi _{F //E'} e| = |\pi _{F //E'} (e - e')| \le |\pi _{F //E'}| \cdot |e - e'| \le 2 |\pi _{E' //F}| \cdot c d(E, E'). \end{aligned}$$

\(\square \)

Proof of Lemma 3.5

That \(\mathcal {B}= E'\oplus F\) follows from Lemma 3.3. The bounds in (a) are given by Lemma A.1, and (b) follows from (a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenthal, A., Young, LS. Entropy, volume growth and SRB measures for Banach space mappings. Invent. math. 207, 833–893 (2017). https://doi.org/10.1007/s00222-016-0678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0678-0

Navigation