Skip to main content
Log in

Integer points on spheres and their orthogonal lattices

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Linnik proved in the late 1950’s the equidistribution of integer points on large spheres under a congruence condition. The congruence condition was lifted in 1988 by Duke (building on a break-through by Iwaniec) using completely different techniques. We conjecture that this equidistribution result also extends to the pairs consisting of a vector on the sphere and the shape of the lattice in its orthogonal complement. We use a joining result for higher rank diagonalizable actions to obtain this conjecture under an additional congruence condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Strictly speaking this is not needed but slightly simplifies the argument in Sect. 4.1.1 (cf. the higher dimensionsal case in [1]).

  2. The argument from [1, Lemma 3.3] could also be used to prove primitivity without the assumption \(D\in {\mathbb {F}}\).

  3. A torsor of a group G is a set on which G acts freely and transitively.

References

  1. Aka, M., Einsiedler, M., Shapira, U.: Integer points on spheres and their orthogonal grids. J. Lond. Math. Soc. 93(1), 143–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aka, M.: Continued fractions of arithmetic sequences of quadratics, in preparation. With an appendix by Philippe Michel (preprint)

  3. Borel, A., Tits, J.: Homomorphismes “abstraits” de groupes algébriques simples. Ann. Math. 2(97), 499–571 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassels, J.W.S.: Rational Quadratic Forms, London Mathematical Society Monographs, vol. 13. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1978)

  5. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 138. Springer, New York (1993)

    MATH  Google Scholar 

  6. Duke, W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92(1), 73–90 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Einsiedler, M., Lindenstrauss, E.: Joinings of higher rank torus actions on homogeneous spaces. http://arxiv.org/abs/1502.05133 (2015)

  8. Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: Distribution of periodic torus orbits on homogeneous spaces. Duke Math. J. 148(1), 119–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: Distribution of periodic torus orbits and Duke’s theorem for cubic fields. Ann. Math. 173(2), 815–885 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Einsiedler, M., Mozes, S., Shah, S., Shapira, U.: Equidistribution of primitive rational points on expanding horospheres. doi:10.1112/S0010437X15007605

  11. Einsiedler, M., Rühr, R., Wirth, P.: Effective equidistribution of shapes of orthogonal lattices (preprint)

  12. Ellenberg, J.S., Michel, P., Venkatesh, A.: Linnik’s ergodic method and the distribution of integer points on spheres. Automorphic representations and L-functions. Tata Inst. Fundam. Res. Stud. Math. 22, 119–185 (2013)

  13. Ellenberg, J.S., Venkatesh, A.: Local-global principles for representations of quadratic forms. Invent. Math. 171(2), 257–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gauss, C.F.: Disquisitiones arithmeticae. Springer-Verlag, New York (1986). Translated and with a preface by Arthur A. Clarke, Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse

  15. Harcos, G.: Subconvex bounds for automorphic l-functions and applications. This is an unpublished dissertation available at http://www.renyi.hu/gharcos/ertekezes.pdf

  16. Harcos, G., Michel, P.: The subconvexity problem for Rankin-Selberg \(L\)-functions and equidistribution of Heegner points. II. Invent. Math. 163(3), 581–655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwaniec, H.: Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87(2), 385–401 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Linnik, Y.V.: Ergodic Properties of Algebraic Fields. Translated from the Russian by M. S. Keane. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 45. Springer-Verlag New York Inc., New York (1968)

  19. Maass, H.: Spherical functions and quadratic forms. J. Indian Math. Soc 20, 117–162 (1956)

    MathSciNet  MATH  Google Scholar 

  20. Maass, H.: Über die Verteilung der zweidimensionalen Untergitter in einem euklidischen Gitter. Mathematische Annalen 137, 319–327 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marklof, J.: The asymptotic distribution of Frobenius numbers. Invent. Math. 181(1), 179–207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Michel, P., Venkatesh, A.: Equidistribution, \(L\)-functions and ergodic theory: on some problems of Yu. Linnik. In: International congress of mathematicians, vol. II, p. 421–457 (2006)

  23. Platonov, V., Rapinchuk, A.: Algebraic groups and number theory. Pure and Applied Mathematics, vol 139. Academic Press Inc., Boston (1994). Translated from the 1991 Russian original by Rachel Rowen

  24. Schmidt, W.M.: The distribution of sublattices of \({\bf Z}^m\). Monatsh. Math. 125(1), 37–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, R.: Appendix to “integer points on spheres and their orthogonal lattices”- arxiv version. arXiv preprint arXiv:1502.04209 (2015)

Download references

Acknowledgments

We would like to thank Elon Lindenstrauss, Philippe Michel, and Akshay Venkatesh for many fruitful conversations over the last years on various topics and research projects that lead to the current paper. While working on this project the authors visited the Israel Institute of Advanced Studies (IIAS) at the Hebrew University and its hospitality is deeply appreciated. We thank Peter Sarnak and Ruixiang Zhang for many conversations on these topics at the IIAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Einsiedler.

Additional information

M.A. acknowledges the support of ISEF, Advanced Research Grant 228304 from the ERC, and SNF Grant 200021-152819. M.E. acknowledges the support of the SNF Grant 200021-127145 and 200021-152819. U.S. acknowledges the support of the Chaya fellowship and ISF Grant 357/13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aka, M., Einsiedler, M. & Shapira, U. Integer points on spheres and their orthogonal lattices. Invent. math. 206, 379–396 (2016). https://doi.org/10.1007/s00222-016-0655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0655-7

Keywords

Navigation