Skip to main content
Log in

Global rigidity of higher rank abelian Anosov algebraic actions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We show that all \(C^\infty \) Anosov \(\mathbb {Z}^r\)-actions on tori and nilmanifolds without rank-one factor actions are, up to \(C^\infty \) conjugacy, actions by automorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As [5] and Theorem 1.1 shows, it turns out that irreducibility is not a crucial issue here.

  2. In the non-generic case where there is a non-trivial coarse Lyapunov subspace \({\mathfrak {v}}^{[-\chi ]}\) whose Lyapunov exponents are negatively proportional to that of \({\mathfrak {v}}\), the new stable foliation corresponds to \(G^{ss}\cdot V^{[-\chi ]}\), also a Lie subgroup, instead.

  3. In fact, this forces \(M\) to be a torus.

References

  1. de la Llave, R.: Remarks on Sobolev regularity in Anosov systems. Ergodic Theory Dynam. Syst. 21(4), 1139–1180 (2001)

    MATH  Google Scholar 

  2. Einsiedler, M., Fisher, T.: Differentiable rigidity for hyperbolic toral actions. Israel J. Math. 157, 347–377 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Farrell, F.T., Jones, L.E.: Anosov diffeomorphisms constructed from \(\pi _{1}\) Diff (\(S^{n}\)). Topology 17(3), 273–282 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fisher, D., Kalinin, B., Spatzier, R.: Totally nonsymplectic Anosov actions on tori and nilmanifolds. Geom. Topol. 15(1), 191–216 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fisher, D., Kalinin, B., Spatzier, R.: Global rigidity of higher rank Anosov actions on tori and nilmanifolds, with an appendix by J. Davis. J. Am. Math. Soc. 26(1), 167–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Franks, J.: Anosov diffeomorphisms on tori. Trans. Am. Math. Soc. 145, 117–124 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gogolev, A.: Diffeomorphisms Hölder conjugate to Anosov diffeomor-phisms. Ergodic Theory Dynam. Syst. 30(2), 441–456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gorodnik, A.: Open problems in dynamics and related fields. J. Mod. Dyn. 1(1), 1–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gorodnik, A., Spatzier, R.: Mixing properties of \(\mathbb{Z}^k\)-actions on nilmani-folds. (2013) (preprint)

  10. Kalinin, B., Katok, A.: Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle: Proc. Sympos. Pure Math., vol. 69, Providence: Am. Math. Soc. 2001, pp. 593–637 (1999)

  11. Kalinin, B., Sadovskaya, V.: Global rigidity for totally nonsymplectic Anosov \(\mathbb{Z}^k\) actions. Geom. Topol. 10, 929–954 (2006). (electronic)

  12. Kalinin, B., Sadovskaya, V.: On the classification of resonance-free Anosov \(\mathbb{Z}^k\) actions. Michigan Math. J. 55(3), 651–670 (2007)

    Google Scholar 

  13. Kalinin, B., Spatzier, R.: On the classification of Cartan actions. Geom. Funct. Anal. 17(2), 468–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Katok, A., Katok, S., Schmidt, K.: Rigidity of measurable structure for \(\mathbb{Z}^d\)-actions by automorphisms of a torus. Comment. Math. Helv. 77(4), 718–745 (2002)

    Google Scholar 

  15. Katok, A., Lewis, J.: Local rigidity for certain groups of toral automorphisms. Israel J. Math. 75(2–3), 203–241 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katok, A., Spatzier, R.J.: First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Inst. Hautes Etudes Sci. Publ. Math. 79, 131–156 (1994) [MR1307298 (96c:58132)]

  17. Katok, A., Spatzier, R.J.: Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Tr. Mat. Inst. Steklova (Din. Sist. i Smezhnye Vopr.) 216, 292–319 (1997). [English transl., Proc. Steklov Inst. Math. 1(216), 287–314 (1997)]

    MathSciNet  Google Scholar 

  18. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. Math. (2) 122(3), 540–574 (1985)

    Google Scholar 

  19. Malcev, A.I.: On a class of homogeneous spaces. Am. Math. Soc. Transl. 1951(39), 33 (1951)

    Google Scholar 

  20. Malyshev, F.M.: Decompositions of nilpotent Lie algebras. Math. Notes Acad. Sci. USSR 23(1), 17–18 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Manñé, R.: Quasi-Anosov diffeomorphisms and hyperbolic manifolds. Trans. Am. Math. Soc. 229, 351–370 (1977)

    Article  Google Scholar 

  22. Manning, A.: There are no new Anosov diffeomorphisms on tori. Am. J. Math. 96, 422–429 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Margulis, G.A., Qian, N.: Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices. Ergodic Theory Dynam. Syst. 21(1), 121–164 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moise, E.E.: Affine structures in \(3\)-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. Math. 56(2), 96–114 (1952)

    Google Scholar 

  25. Parry, W.: Ergodic properties of affine transformations and flows on nil-manifolds. Am. J. Math. 91, 757–771 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pesin, Ya. B., Sinaǐ, Ya. G.: Gibbs measures for partially hyperbolic attractors. Ergodic Theory Dynam. Syst. 2(3–4), 417–438 (1982)

    Google Scholar 

  27. Radó, T.: Uber den Begriff der Riemannschen Fläche. Acta Litt. Sci. Szeged 2, 101–121 (1925)

    MATH  Google Scholar 

  28. Rauch, J., Taylor, M.: Regularity of functions smooth along foliations, and elliptic regularity. J. Funct. Anal. 225(1), 74–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rodriguez Hertz, F.: Global rigidity of certain abelian actions by toral automorphisms. J. Mod. Dyn. 1(3), 425–442 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruelle, D.: Ergodic theory of differentiable dynamical systems. Inst. Hautes Etudes Sci. Publ. Math. 50, 27–58 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996)

    Google Scholar 

  32. Starkov, A.N.: The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus. J. Math. Sci. (New York) 95(5), 2576–2582 (1999). (Dyn. Syst. 7)

    Article  MathSciNet  MATH  Google Scholar 

  33. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  34. Walters, P.: Conjugacy properties of affine transformations of nilmanifolds. Math. Syst. Theory 4, 327–333 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Federico Rodriguez Hertz was supported by NSF grant DMS-1201326. Zhiren Wang was supported by NSF grant DMS-1201453 and an AMS-Simons travel grant. We are grateful to the anonymous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rodriguez Hertz.

Appendix A: A regularity theorem along Hölder foliations

Appendix A: A regularity theorem along Hölder foliations

Let \(M\) be a compact Riemannian manifold with a continuous foliation \(\mathcal {F}\) with smooth leaves. Write points in \(\mathbb {R}^{\dim M}\) as \((x,y)\in \mathbb {R}^{\dim M-\dim \mathcal {F}}\times \mathbb {R}^{\dim \mathcal {F}}\). Suppose there are Hölder continuous local chart maps \(\Gamma \) from open sets \(O\subset \mathbb {R}^{\dim M}\) to \(M\), such that \(\Gamma \) sends subspaces parallel to the \(y\)-hyperplane to leaves of \(\mathcal {F}\) by \(C^\infty \) local immersions, and pushes the Lebesgue measure on \(\mathbb {R}^{\dim M}\) to an absolutely continuous measure \(J\mathrm {d}\mathrm {Vol}\) on \(\Gamma (O)\). Moreover, assume that \(J\) is also \(C^\infty \) along the \(\mathcal {F}\) leaves, and that all partial derivatives of \(\Gamma \) and \(J\) of arbitrary orders along the \(y\) direction are Hölder continuous on \(O\).

Theorem A.1

Suppose \(M\) and \(\mathcal {F}\) are as above. If a Hölder continuous function \(\phi \) on \(M\) satisfies that for all \(\theta >0\), all partial derivatives of \(\phi \) along \(\mathcal {F}\) of all orders belong to \((C^\theta )^*\), then all these partial derivatives are Hölder continuous.

This theorem is motivated by [28, Theorem 1.1].

Let \(B\) be the closed unit ball in \(\mathbb {R}^m\). Given \(\alpha \in [0,1)\) let us denote with \(C_0^{\alpha }(B\times \mathbb {T}^l)\) the closure of the \(C^\infty \) functions of compact support inside the interior of the unit ball times \(\mathbb {T}^l\) w.r.t. the \(C^\alpha \)-norm \(\Vert \phi \Vert _{C^\alpha }\) given in (3.14). When the space \(B\times \mathbb {T}^l\) is understood we shall denote it directly with \(C_0^{\alpha }\). Denote points in \(B\times \mathbb {T}^l\) by \((x,y)\). Take \(\alpha \in [0,1)\). Given \(\phi \in C_0^\alpha \), \(k\in \mathbb {N}\) and \(\gamma \in [0,1)\), we say that \(\phi \) has \(k\)-th derivative in the \(y\) direction belonging to \((C^{\gamma })^*\) if for any multiindex \(\mathbf{r}=(r_1,\dots r_l)\) with \(|\mathbf{r}|=k\) we have that

$$\begin{aligned} \partial ^\mathbf{r}_y \phi \in (C^{\gamma })^* \end{aligned}$$

in the sense that, there is a constant \(C=C(\gamma ,\mathbf{r})\) such that for any \(u\in C^{\infty }_c(\mathbb {R}^m\times \mathbb {T}^l)\), we have that

$$\begin{aligned} \left| \,\,\int \limits _{\mathbb {R}^m\times \mathbb {T}^l}\phi \partial ^\mathbf{r}_y u\mathrm {d}x\mathrm {d}y\right| \le C\Vert u\Vert _{C^{\gamma }}. \end{aligned}$$

Here \(|\mathbf {r}|=r_1+r_2+\cdots +r_l\), and \(\partial _y^\mathbf {r}=\partial _{y_1}^{r_1}\cdots \partial _{y_l}^{r_l}\).

Proposition A.2

Let \(\alpha \in (0,1)\) and let \(\phi \in C_0^\alpha \). Let us assume that there is \(\gamma \in [0,1)\) such that partial derivatives of all orders in the \(y\) direction of \(\phi \) belong to \((C^{\gamma })^*\). Then for some \(\beta \in (0,\alpha )\) and for any multiindex \(\mathbf{r}=(r_1,\dots r_l)\) we have that

$$\begin{aligned} \partial ^\mathbf{r}_y \phi \in C_0^{\beta }. \end{aligned}$$

That is, if \(\phi \) is Hölder and has weak derivatives of all orders in the \(y\) direction, then it has Hölder continuous derivatives in the \(y\) direction.

Theorem A.1 is an almost immediate corollary to Proposition A.2.

Proof of implication Proposition A.2 \(\Rightarrow \)Theorem A.1] By hypothesis on the foliation \(\mathcal {F}\) and making partition of unity, we may assume \(M=\mathbb {R}^m\times \mathbb {R}^l\), \(\mathcal {F}\) is the foliation into \(\mathbb {R}^l\) hyperplanes in \(y\) direction, and \(\phi \) is compactly supported. We can even assume \(\phi \) is supported on \(B\times (-\frac{1}{4},\frac{1}{4})^l\). This new case follows from Proposition A.2. by identify \((-\frac{1}{4},\frac{1}{4})^l\) with an open subset of \(\mathbb {T}^l\).

We now aim to prove Proposition A.2. Consider \(\phi \) as in Proposition A.2. Let us write

$$\begin{aligned} \phi (x,y)=\sum _{\mathbf{n}\in \mathbb {Z}^l}\phi _\mathbf{n}(x)e^{2\pi i \mathbf{n}\cdot y} \end{aligned}$$

where

$$\begin{aligned} \phi _\mathbf{n}(x)=\int \limits _{\mathbb {T}^l}\phi (x,y)e^{-2\pi i \mathbf{n}\cdot y}\mathrm {d}y. \end{aligned}$$

We have that for any \(\mathbf{n}\in \mathbb {Z}^l\),

$$\begin{aligned} \Vert \phi _\mathbf{n}\Vert _{C^\alpha (\mathbb {R}^m)}\le \Vert \phi \Vert _{C^\alpha (\mathbb {R}^m\times \mathbb {T}^l)}. \end{aligned}$$
(A.1)

On the other hand, since \(\phi \) has partial derivatives of all orders in the \(y\) direction in the weak \(C^{\gamma }\)-sense, for any \(\mathbf {r}\) there is a constant \(C_0(\mathbf {r})\) such that for any \(u\in C^{\infty }_c(B\times \mathbb {T}^l)\),

$$\begin{aligned} \left| \,\,\int \limits _{B\times \mathbb {T}^l}\phi \partial ^\mathbf {r}_yu\mathrm {d}x\mathrm {d}y\right| \le C_0(\mathbf {r})\Vert u\Vert _{C^{\gamma }_0(B\times \mathbb {T}^l)}. \end{aligned}$$
(A.2)

In the sequel we shall use several standard embeddings of Sobolev’s spaces and interpolation. Given \(s\in \mathbb {R}\) and \(1\le p<\infty \) let \(H^{s,p}=H^{s,p}(\mathbb {R}^m)\) be the Sobolev space of order \(s\) over \(L^p\), i.e. \(H^{s,p}(\mathbb {R}^m)\) is the closure of \(C_c^\infty (\mathbb {R}^m)\) w.r.t. the norm

$$\begin{aligned} \Vert u\Vert _{s,p}=\left\| \left( (1+|\xi |^2)^{s/2}|\hat{u}|\right) ^{\vee }\right\| _{L^p}. \end{aligned}$$

Here \(\hat{u}\) stands for the Fourier transform and \(u^\vee \) is the inverse transform. The following can be found in any book on Sobolev spaces (see for instance [31, 33]).

Lemma A.3

Let \(s,t\in \mathbb {R}\), for \(1<p<\infty \), let \(p^*\) be such that \(1=\frac{1}{p}+\frac{1}{p^*}\).

  1. (1)

    If \(s<t\) then

    $$\begin{aligned} H^{s,p}\subset H^{t,p} \end{aligned}$$

    and the embedding is continuous.

  2. (2)
    $$\begin{aligned} \left( H^{s,p}\right) ^*=H^{-s,p^*}. \end{aligned}$$
  3. (3)

    If \(\frac{1}{q}=\frac{1}{p}-\frac{s-t}{m}\) then

    $$\begin{aligned} H^{s,p}(\mathbb {R}^m)\subset H^{t,q}(\mathbb {R}^m) \end{aligned}$$

    where the embedding is continuous.

  4. (4)

    If \(\alpha \in (0,1)\), \(r\in \mathbb {N}\) and \(\frac{s-r-\alpha }{m} = \frac{1}{p}\) then

    $$\begin{aligned} H^{s,p}(\mathbb {R}^m)\subset C^{r,\alpha }(\mathbb {R}^m) \end{aligned}$$

    and the embedding is continuous.

  5. (5)

    For any \(\alpha \in (0,1)\) and for any \(p\ge 1\), and for any \(s<\alpha \),

    $$\begin{aligned} C^{\alpha }(\mathbb {R}^m)\cap L^p(\mathbb {R}^m)\subset H^{s,p}(\mathbb {R}^m) \end{aligned}$$

    and the embedding is continuous.

  6. (6)

    If \(s_1,s_2\in \mathbb {R}\), \(1< p_1,p_2<\infty \), \(\theta \in [0,1]\) and \(t=\theta s_1+(1-\theta )s_2\), \(\frac{1}{p}=\frac{\theta }{p_1}+\frac{1-\theta }{p_2}\) then there is a constant \(C=C(s_1,s_2,\theta ,p_1,p_2)\) such that

    $$\begin{aligned} |u|_{t,p}\le C |u|_{s_1,p_1}^{\theta }|u|_{s_2,p_2}^{1-\theta }. \end{aligned}$$

Lemma A.4

For all multiindex \(\mathbf {r}\), there is a constant \(C(\mathbf {r})\) such that, for any \(\mathbf {n}\in \mathbb {Z}^l\), with \(|\mathbf {n}^{\mathbf {r}}|\ne 0\),

$$\begin{aligned} \Vert \phi _{\mathbf {n}}\Vert _{(C^\gamma )^*}\le \frac{C(\mathbf {r})|\mathbf {n}|}{|\mathbf {n}^{\mathbf {r}}|}. \end{aligned}$$
(A.3)

Here and below, \(|\mathbf {z}|=\sum _{i=1}^l|z_i|\) and \(\mathbf {z}^\mathbf {r}=z_1^{r_1}z_2^{r_2}\cdots z_l^{r_l}\) for all \(\mathbf {z}\in \mathbb {C}^l\).

Proof

Take \(w\in C_c^\infty (B)\).

$$\begin{aligned}&\displaystyle \left| \int \limits _B\phi _\mathbf {n}(x) w(x)\mathrm {d}x\right| \\&\quad =\left| \,\,\int \limits _{B\times \mathbb {T}^l}\phi (x,y)\cdot e^{2\pi i\mathbf {n}\cdot y}w(x)\mathrm {d}x\mathrm {d}y\right| \\&\quad =\left| (2\pi i\mathbf {n})^{-\mathbf {r}}\int \limits _{B\times \mathbb {T}^l}\phi (x,y)\partial _y^\mathbf {r}\left( e^{2\pi i\mathbf {n}\cdot y}w(x)\right) \mathrm {d}x\mathrm {d}y\right| \end{aligned}$$

By (A.2),

$$\begin{aligned} \displaystyle \left| \int \limits _B\phi _\mathbf {n}(x) w(x)\mathrm {d}x\right|&\le \frac{1}{(2\pi )^{|\mathbf {r}|}|\mathbf {n}^\mathbf {r}|}\cdot \left\| e^{2\pi i\mathbf {n}\cdot y}w(x)\right\| _{C^\gamma }\\&\le \frac{C_0(\mathbf {r})}{(2\pi )^{|\mathbf {r}|}|\mathbf {n}^\mathbf {r}|}\cdot \left\| e^{2\pi i\mathbf {n}\cdot y}\right\| _{C^\gamma }\Vert w\Vert _{C^\gamma }\\&\le \frac{C_0(\mathbf {r})}{(2\pi )^{|\mathbf {r}|}|\mathbf {n}^\mathbf {r}|}\cdot \left\| e^{2\pi i\mathbf {n}\cdot y}\right\| _{C^1}\Vert w\Vert _{C^\gamma }\\&= \frac{2\pi |\mathbf {n}|C_0(\mathbf {r})}{(2\pi )^{|\mathbf {r}|}|\mathbf {n}^\mathbf {r}|}\cdot \Vert w\Vert _{C^\gamma }, \end{aligned}$$

which is the lemma. \(\square \)

Lemma A.5

There exist \(\beta >0\) and \(\theta >0\) such that for any multiindex \(\mathbf {r}\), there is a constant \(C(\mathbf {r},\beta )\) such that for any \(\mathbf {n}\in \mathbb {Z}^l\), with \(|\mathbf {n}^{\mathbf {r}}|\ne 0\),

$$\begin{aligned} \Vert \phi _{\mathbf {n}}\Vert _{C^\beta }\le \frac{C(\mathbf {r},\beta )|\mathbf {n}|^\theta }{|\mathbf {n}^{\mathbf {r}}|^{\theta }}. \end{aligned}$$
(A.4)

Proof

Fix a sufficiently large \(p^*\) such that \(\frac{m}{p^*}<\frac{\alpha }{4}\).

Take \(s\) and \(p\), such that \(\frac{s-\gamma }{m}=\frac{1}{p}\) and \(1=\frac{1}{p}+\frac{1}{p^*}\). By Lemma A.3, we have a continuous embeddings \((C^\gamma )^*\subset (H^{s,p})^*=H^{-s,p^*}\). Therefore by Lemma A.4, there is \(C_1(\mathbf {r})\) such that

$$\begin{aligned} \Vert \phi _\mathbf {n}\Vert _{H^{-s,p^*}}\le \frac{C_1(\mathbf {r})|\mathbf {n}|}{|\mathbf {n}^\mathbf {r}|}. \end{aligned}$$
(A.5)

On the other hand, \(\phi _\mathbf {n}\) is clearly bounded by \(\Vert \phi \Vert _{L^\infty }\le \Vert \phi \Vert _{C^\alpha }\). Hence \(\Vert \phi _\mathbf {n}\Vert _{L^{p^*}}\le a_1\Vert \phi \Vert _{C^\alpha }\) where \(a_1\) depends only on the volume of the unit ball \(B\). Combining this with (A.1), we know by Lemma A.5(5) that there is a constant \(C_2\) that depends only on the dimension, such that

$$\begin{aligned} \Vert \phi _\mathbf {n}\Vert _{H^{\frac{\alpha }{2},p^*}}\le C_2 \Vert \phi \Vert _{C^\alpha }. \end{aligned}$$
(A.6)

Choose \(\theta \in (0,1)\) such that \(\theta \cdot (-s)+(1-\theta )\cdot \frac{\alpha }{2}=\frac{\alpha }{4}\). The interpolation formula Lemma A.3(6) allows to merge (A.5) and (A.6) into:

$$\begin{aligned} \Vert \phi _\mathbf {n}\Vert _{H^{\frac{\alpha }{4},p^*}}\le C_1(\mathbf {r})^\theta C_2^{1-\theta }\Vert \phi \Vert _{C^\alpha }^{1-\theta }\left( \frac{|\mathbf {n}|}{|\mathbf {n}^\mathbf {r}|}\right) ^\theta . \end{aligned}$$
(A.7)

Take \(\beta >0\) such that \(\frac{\frac{\alpha }{4}-\beta }{m}=\frac{1}{p^*}\), which is possible thanks to the choice of \(p^*\). (A.7) establishes the lemma since \(H^{\frac{\alpha }{4},p^*}\) continuously embeds into \(C^\beta \). \(\square \)

Corollary A.6

For any \(T>0\) there is \(C(T)>0\) such that

$$\begin{aligned} \Vert \phi _{\mathbf {n}}\Vert _{C^\beta }\le \frac{C(T)}{|\mathbf {n}|^T} \end{aligned}$$

for any \(0\ne \mathbf {n}\in \mathbb {Z}^l\).

Proof

Given \(\mathbf {n}\ne 0\), there is \(1\le i\le l\) such that \(|n_i|\ge \frac{|\mathbf {n}|}{l}\). Choose \(\mathbf {r}\) by letting \(r_i=\lceil \frac{T+1}{\theta }\rceil \) and \(r_j=0\) if \(j\ne i\). Then the corollary directly follows from Lemma A.5. \(\square \)

Proof of Proposition A.2

Let \(A>0\) and \(\mathbf {r}\) be a multiindex with \(|\mathbf {r}|=r\), define

$$\begin{aligned} \phi _{\mathbf {r},A}(x,y)=\sum _{\mathbf {n}\in \mathbb {Z}^l, |\mathbf {n}|\le A}(2\pi i)^r\mathbf {n}^\mathbf {r}\phi _\mathbf {n}(x)e^{2\pi i\mathbf {n}\cdot y}. \end{aligned}$$

Then there are constants \(C_1(\mathbf {r}), C_2(r)\) such that

$$\begin{aligned}&|\phi _{\mathbf {r},A}(x,y)-\phi _{\mathbf {r},A}(z,y)|\\&\quad \le C_1(\mathbf {r})\sum _{\mathbf {n}\in \mathbb {Z}^l, |\mathbf {n}|\le A}|\mathbf {n}|^r|\phi _\mathbf {n}(x)-\phi _\mathbf {n}(z)|\\&\quad \le C_1(\mathbf {r})\sum _{\mathbf {n}\in \mathbb {Z}^l, |\mathbf {n}|\le A}|\mathbf {n}|^r\Vert \phi _\mathbf {n}\Vert _{C^{\beta }_0}\mathrm{dist }(x,z)^\beta \\&\quad \le C_1(\mathbf {r})C(r+2l+1)\left( \sum _{\mathbf {n}\in \mathbb {Z}^l, |\mathbf {n}|\le A}\frac{1}{|\mathbf {n}|^{2l+1}}\right) \mathrm{dist }(x,z)^\beta \\&\quad \le C_2(r)\mathrm{dist }(x,z)^\beta , \end{aligned}$$

where \(C(r+2l+1)\) is that from Corollary A.6.

This same computation gives that

$$\begin{aligned} \lim _{A\rightarrow \infty }\phi _{\mathbf {r},A}=\partial ^\mathbf {r}_y\phi \end{aligned}$$

in \(C^{\beta }\)-topology. Which implies that \(\partial ^\mathbf {r}_y\phi \) is \(C^{\beta }\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez Hertz, F., Wang, Z. Global rigidity of higher rank abelian Anosov algebraic actions. Invent. math. 198, 165–209 (2014). https://doi.org/10.1007/s00222-014-0499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0499-y

Navigation