Skip to main content
Log in

Brownian Gibbs property for Airy line ensembles

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Consider a collection of N Brownian bridges \(B_{i}:[-N,N] \to \mathbb{R} \), B i (−N)=B i (N)=0, 1≤iN, conditioned not to intersect. The edge-scaling limit of this system is obtained by taking a weak limit as N→∞ of the collection of curves scaled so that the point (0,21/2 N) is fixed and space is squeezed, horizontally by a factor of N 2/3 and vertically by N 1/3. If a parabola is added to each of the curves of this scaling limit, an x-translation invariant process sometimes called the multi-line Airy process is obtained. We prove the existence of a version of this process (which we call the Airy line ensemble) in which the curves are almost surely everywhere continuous and non-intersecting. This process naturally arises in the study of growth processes and random matrix ensembles, as do related processes with “wanderers” and “outliers”. We formulate our results to treat these relatives as well.

Note that the law of the finite collection of Brownian bridges above has the property—called the Brownian Gibbs property—of being invariant under the following action. Select an index 1≤kN and erase B k on a fixed time interval (a,b)⊆(−N,N); then replace this erased curve with a new curve on (a,b) according to the law of a Brownian bridge between the two existing endpoints (a,B k (a)) and (b,B k (b)), conditioned to intersect neither the curve above nor the one below. We show that this property is preserved under the edge-scaling limit and thus establish that the Airy line ensemble has the Brownian Gibbs property.

An immediate consequence of the Brownian Gibbs property is a confirmation of the prediction of M. Prähofer and H. Spohn that each line of the Airy line ensemble is locally absolutely continuous with respect to Brownian motion. We also obtain a proof of the long-standing conjecture of K. Johansson that the top line of the Airy line ensemble minus a parabola attains its maximum at a unique point. This establishes the asymptotic law of the transversal fluctuation of last passage percolation with geometric weights. Our probabilistic approach complements the perspective of exactly solvable systems which is often taken in studying the multi-line Airy process, and readily yields several other interesting properties of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. One way of seeing this is as follows: For a fixed δ observe that as the starting and ending points go to zero, the distributions of the height of the N lines at ±(Nδ) converge to a non-trivial limit which can be explicitly calculated via the Karlin-McGregor formula [47]. The resulting ensemble on the interval [−N+δ,Nδ] with this non-trivial entrance and exit law is continuous and non-intersecting and has the Brownian Gibbs property. As δ goes to zero this procedure yields a consistent family of measures which one identifies as the desired line ensemble with starting and ending height all identically zero.

  2. The rth correlation function is given essentially by the probability of finding points in small neighborhoods of (s i ,x i ) for s i A, \(x_{i}\in \mathbb{R} \) and i=1,…,r.

References

  1. Adler, M., van Moerbeke, P.: PDEs for the joint distributions of the Dyson, Airy and sine processes. Ann. Probab. 33, 1326–1361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adler, M., Delépine, J., van Moerbeke, P.: Dyson’s nonintersecting Brownian motions with a few outliers. Commun. Pure Appl. Math. 62, 334–395 (2009)

    Article  MATH  Google Scholar 

  3. Adler, M., Ferrari, P.L., van Moerbeke, P.: Airy processes with wanderers and new universality classes. Ann. Probab. 38, 714–769 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension 1+1. Phys. Rev. Lett. 105, 090603 (2010)

    Article  Google Scholar 

  5. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baik, J., Suidan, T.M.: Random matrix central limit theorems for nonintersecting random walks. Ann. Probab. 35, 1807–1834 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baik, J., Deift, P.A., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017–1070 (2010)

    MATH  Google Scholar 

  9. Baik, J., Liechty, K., Schehr, G.: On the joint distribution of the maximum and its position of the Airy2 process minus a parabola. J. Math. Phys. 53, 083303 (2012)

    Article  MathSciNet  Google Scholar 

  10. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  11. Borodin, A., Duits, M.: Limits of determinantal processes near a tacnode. Ann. Inst. Henri Poincaré B, Probab. Stat. 47, 243–258 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Borodin, A., Gorin, V.: Markov processes of infinitely many nonintersecting random walks. arXiv:1106.1299

  13. Borodin, A., Olshanski, G.: Markov processes on the path space of the Gelfand-Tsetlin graph and on its boundary. arXiv:1009.2029

  14. Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275–290 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Borodin, A., Shloshman, S.: Gibbs ensembles of nonintersecting paths. Commun. Math. Phys. 293, 145–170 (2010)

    Article  MATH  Google Scholar 

  16. Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14, 297–346 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrix Theory Appl. 1, 1130001 (2012). arXiv:1106.1596

    Article  MathSciNet  Google Scholar 

  18. Corwin, I., Hammond, A.: The H-Brownian Gibbs property of the KPZ line ensemble (in preparation)

  19. Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140, 232–267 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Corwin, I., Quastel, J., Remenik, D.: Continuum statistics of the Airy2 process. arXiv:1106.2717

  21. de Gennes, P.G.: Soluble model for fibrous structures with steric constraints. J. Chem. Phys. 48, 2257–2259 (1968)

    Article  Google Scholar 

  22. de Haroa, S., Tierz, M.: Brownian motion, Chern-Simons theory, and 2D Yang-Mills. Phys. Lett. B 601, 201–208 (2004)

    Article  MathSciNet  Google Scholar 

  23. Durrett, R.: Probability: Theory and Examples. Duxbury Press, Belmont (2010)

    Book  Google Scholar 

  24. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  25. Feierl, T.: The height and range of watermelons without wall. In: Combinatorial Algorithms. Lecture Notes in Computer Science, vol. 5874, pp. 242–253. Springer, Berlin (2009)

    Chapter  Google Scholar 

  26. Ferrari, P.L.: From interacting particle systems to random matrices. J. Stat. Mech. P10016 (2010)

  27. Ferrari, P.L., Spohn, H.: Random growth models. arXiv:1003.0881

  28. Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  MATH  Google Scholar 

  29. Fisher, D.S., Huse, D.A.: Directed paths in random potential. Phys. Rev. B 43, 10728–10742 (1991)

    Article  Google Scholar 

  30. Forrester, P.J., Majumdar, S.N., Schehr, G.: Non-intersecting Brownian walkers and Yang-Mills theory on the sphere. Nucl. Phys. B 844, 500–526 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)

    Article  MathSciNet  Google Scholar 

  32. Garban, C., Pete, G., Schramm, O.: Pivotal, cluster and interface measures for critical planar percolation (2010). arXiv:1008.1378

  33. Grabiner, D.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré B, Probab. Stat. 35, 177–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Guttmann, A.J., Owczarek, A.L., Viennot, X.G.: Vicious walkers and Young tableaux I: without walls. J. Phys. A 31, 8123 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hägg, J.: Local Gaussian fluctuations in the Airy and discrete PNG processes. Ann. Probab. 36, 1059–1092 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–415 (1995)

    Article  Google Scholar 

  37. Hollander, F.: Random Polymers. École d’Été de Probabilités de Saint-Flour XXXVII. Lecture Notes in Mathematics, vol. 1974. Springer, Berlin (2007)

    Google Scholar 

  38. Huse, D.A., Fisher, M.E.: Commensurate melting, domain walls, and dislocations. Phys. Rev. B 29, 239–270 (1984)

    Article  MathSciNet  Google Scholar 

  39. Huse, D., Henley, C.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708–2711 (1985)

    Article  Google Scholar 

  40. Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503–544 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003)

    MATH  MathSciNet  Google Scholar 

  44. Johansson, K.: Random Matrices and Determinantal Processes. Ecole de Physique, Les Houches (2005)

    Google Scholar 

  45. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  46. Kardar, K., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  MATH  Google Scholar 

  47. Karlin, S., McGregor, J.: Coincidence probability. Pac. J. Math. 9, 1141–1164 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  48. Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142, 592–615 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Liechty, K.: Nonintersecting Brownian excursions on the half-line and discrete Gaussian orthogonal polynomials. J. Stat. Phys. 147, 582 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  51. McKean, H.P.: Stochastic Integrals. Academic Press, New York (1969)

    MATH  Google Scholar 

  52. Minlos, R.A., Shlosman, S., Suhov, Yu.M.: In: On Dobrushin’s Way: From Probability Theory to Statistical Physics. AMS Translations, vol. 198 (2000)

    Google Scholar 

  53. Moreno Flores, G., Quastel, J., Remenik, D.: Endpoint distribution of directed polymers in 1+1 dimensions. arXiv:1106.2716

  54. Nadal, C., Majumdar, S.N.: Nonintersecting Brownian interfaces and Wishart random matrices. Phys. Rev. E 79, 061117 (2009)

    Article  MathSciNet  Google Scholar 

  55. Nagao, T., Forrester, P.J.: Vicious random walkers and a discretization of Gaussian random matrix ensembles. Nucl. Phys. B 620, 551–565 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  56. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437–458 (2012). arXiv:0910.0069

    Article  MATH  MathSciNet  Google Scholar 

  57. O’Connell, N., Warren, J.: A multi-layer extension of the stochastic heat equation. arXiv:1104.3509

  58. Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Pitman, J., Yor, M.: Decomposition at the maximum for exclusions and bridges of one-dimensional diffusions. In: Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds.) Itô’s Stochastic Calculus and Probability Theory, pp. 293–310. Springer, Berlin (1996)

    Chapter  Google Scholar 

  60. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MATH  Google Scholar 

  61. Quastel, J., Moreno Flores, G.: Intermediate disorder for the O’Connell-Yor model (in preparation)

  62. Rambeau, J., Schehr, G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. Europhys. Lett. 91, 60006 (2010)

    Article  Google Scholar 

  63. Rambeau, J., Schehr, G.: Distribution of the time at which N vicious walkers reach their maximal height. Phys. Rev. E 83, 061146 (2011)

    Article  Google Scholar 

  64. Sasamoto, T., Spohn, H.: One-dimensional KPZ equation: an exact solution and its universality. Phys. Rev. Lett. 104, 23 (2010)

    Article  Google Scholar 

  65. Schehr, G.: Extremes of N vicious walkers for large N: application to the directed polymer and KPZ interfaces. J. Stat. Phys. 149, 385–410 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  66. Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  67. Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40, 19–73 (2012). arXiv:0911.2446

    Article  MATH  MathSciNet  Google Scholar 

  68. Sheffield, S.: Random Surfaces. Asterisque, vol. 304 (2005)

    MATH  Google Scholar 

  69. Shinault, G., Tracy, C.: Asymptotics for the covariance of the Airy2 process. J. Stat. Phys. 143, 60–71 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  70. Simon, B.: Trace Ideals and Their Applications. AMS, Providence (2005)

    MATH  Google Scholar 

  71. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. (2000)

  72. Spohn, H.: KPZ equation in one dimension and line ensembles. In: Proceedings of STATPHYS22, pp. 847–857. Springer, Berlin (2005)

    Google Scholar 

  73. Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  74. Tracy, C., Widom, H.: The Pearcey process. Commun. Math. Phys. 263, 381–400 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  75. Tracy, C., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953–979 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  76. Widom, H.: On asymptotics of the Airy process. J. Stat. Phys. 115, 1129–1134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  77. Williams, D.: Path decomposition and continuity of local time for one dimensional diffusions I. Proc. Lond. Math. Soc. 28, 738–768 (1974)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This project was initiated at the 2010 Clay Mathematics Institute Summer School in Buzios, Brazil. The authors also thank the Mathematical Science Research Institute, the Fields Institute and the Mathematisches Forschungsinstitut Oberwolfach for their hospitality and support, as much of this work was completed during stays at these institutes. We thank Jinho Baik, Jeremy Quastel and Herbert Spohn for their input and interest. We also thank our referee for a thorough reading of this work and many useful comments. A.H. would like to thank Scott Sheffield for drawing attention to a talk in 2006 in which Andrei Okounkov proposed problems closely related to the discussion in Sect. 3.2 and for interesting ensuing conversations, and Neil O’Connell and Jon Warren for useful early discussions regarding approaches to proving the results in this article. I.C. recognizes support and travel funding from the NSF through grant DMS-1056390 and the PIRE grant OISE-07-30136 as well as Microsoft Research New England’s support through the Schramm Memorial Fellowship and the Clay Mathematics Institute’s support through a Clay Research Fellowship. A.H. was supported principally by EPSRC grant EP/I004378/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Corwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corwin, I., Hammond, A. Brownian Gibbs property for Airy line ensembles. Invent. math. 195, 441–508 (2014). https://doi.org/10.1007/s00222-013-0462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0462-3

Keywords

Navigation