Skip to main content
Log in

Ultrametric subsets with large Hausdorff dimension

  • Published:
Inventiones mathematicae Aims and scope

Abstract

It is shown that for every ε∈(0,1), every compact metric space (X,d) has a compact subset SX that embeds into an ultrametric space with distortion O(1/ε), and

$$\dim_H(S)\geqslant (1-\varepsilon)\dim_H(X),$$

where dim H (⋅) denotes Hausdorff dimension. The above O(1/ε) distortion estimate is shown to be sharp via a construction based on sequences of expander graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Csörnyei, M., Preiss, D.: Structure of null sets in the plane and applications. In: European Congress of Mathematics, pp. 3–22. Eur. Math. Soc., Zürich (2005)

    Google Scholar 

  2. Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318(3), 527–555 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. Ann. Math. 162(2), 643–709 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartal, Y., Linial, N., Mendel, M., Naor, A.: Some low distortion metric Ramsey problems. Discrete Comput. Geom. 33(1), 27–41 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)

    Article  MATH  Google Scholar 

  6. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)

    Google Scholar 

  7. Blum, A., Karloff, H., Rabani, Y., Saks, M.: A decomposition theorem for task systems and bounds for randomized server problems. SIAM J. Comput. 30(5), 1624–1661 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Figiel, T., Milman, V.: On Hilbertian subsets of finite metric spaces. Isr. J. Math. 55(2), 147–152 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  10. Carleson, L.: Selected Problems on Exceptional Sets. Van Nostrand Mathematical Studies, vol. 13. D. Van Nostrand Co., Inc., Princeton (1967)

    MATH  Google Scholar 

  11. Chung, F.R.K.: Diameters and eigenvalues. J. Am. Math. Soc. 2(2), 187–196 (1989)

    Article  MATH  Google Scholar 

  12. Dvoretzky, A.: Some results on convex bodies and Banach spaces. In: Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, pp. 123–160. Jerusalem Academic Press, Jerusalem (1961)

    Google Scholar 

  13. Funano, K.: Two infinite versions of nonlinear Dvoretzky’s theorem. Preprint (2011), available at http://arxiv.org/abs/1111.1627

  14. Grothendieck, A.: Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers. Bol. Soc. Mat. São Paulo 8, 81–110 (1956), 1953

    MathSciNet  Google Scholar 

  15. Howroyd, J.D.: On dimension and on the existence of sets of finite positive Hausdorff measure. Proc. Lond. Math. Soc. 70(3), 581–604 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hughes, B.: Trees and ultrametric spaces: a categorical equivalence. Adv. Math. 189(1), 148–191 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karloff, H., Rabani, Y., Ravid, Y.: Lower bounds for randomized k-server and motion-planning algorithms. SIAM J. Comput. 23(2), 293–312 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Keleti, T.: A peculiar set in the plane constructed by Vituškin, Ivanov and Melnikov. Real Anal. Exch. 20(1), 291–312 (1994/95)

    MathSciNet  Google Scholar 

  19. Keleti, T., Máthé, A., Zindulka, O.: Hausdorff dimension of metric spaces and Lipschitz maps onto cubes. Preprint (2012), available at http://arxiv.org/abs/1203.0686

  20. Laczkovich, M.: Paradoxical decompositions using Lipschitz functions. Real Anal. Exch. 17(1), 439–444 (1991/92)

    MathSciNet  Google Scholar 

  21. Lee, J.R., Naor, A.: Extending Lipschitz functions via random metric partitions. Invent. Math. 160(1), 59–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matoušek, J.: On Lipschitz mappings onto a square. In: The Mathematics of Paul Erdős, II. Algorithms Combin., vol. 14, pp. 303–309. Springer, Berlin (1997)

    Chapter  Google Scholar 

  23. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995). Fractals and rectifiability

    Book  MATH  Google Scholar 

  24. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. J. Eur. Math. Soc. 9(2), 253–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mendel, M., Naor, A.: Ultrametric skeletons. Preprint (2011), available at http://arxiv.org/abs/1112.3416. Proc. Natl. Acad. Sci. USA (to appear)

  26. Milman, V., Schechtman, G.: An “isomorphic” version of Dvoretzky’s theorem. II. In: Convex Geometric Analysis, Berkeley, CA, 1996. Math. Sci. Res. Inst. Publ., vol. 34, pp. 159–164. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  27. Milman, V.D.: A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkc. Anal. Prilož. 5(4), 28–37 (1971)

    MathSciNet  Google Scholar 

  28. Mörters, P., Peres, Y.: Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010). With an appendix by Oded Schramm and Wendelin Werner

    MATH  Google Scholar 

  29. Naor, A., Tao, T.: Scale-oblivious metric fragmentation and the nonlinear Dvoretzky theorem. Isr. J. Math. (2012). doi:10.1007/s11856-012-0039-7

  30. Sagan, H.: Space-Filling Curves. Universitext. Springer, New York (1994)

    Book  MATH  Google Scholar 

  31. Schechtman, G.: Two observations regarding embedding subsets of Euclidean spaces in normed spaces. Adv. Math. 200(1), 125–135 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pp. 703–712. IEEE Computer Soc, Los Alamitos (2009)

    Chapter  Google Scholar 

  33. Talagrand, M.: Regularity of Gaussian processes. Acta Math. 159(1–2), 99–149 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Talagrand, M.: The Generic Chaining. Springer Monographs in Mathematics. Springer, Berlin (2005). Upper and lower bounds of stochastic processes

    MATH  Google Scholar 

  35. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes (2011). Modern Methods and Classical Problems. Forthcoming book

  36. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Urbański, M.: Transfinite Hausdorff dimension. Topol. Appl. 156(17), 2762–2771 (2009)

    Article  MATH  Google Scholar 

  38. Vestfrid, I.A., Timan, A.F.: A universality property of Hilbert spaces. Dokl. Akad. Nauk SSSR 246(3), 528–530 (1979)

    MathSciNet  Google Scholar 

  39. Vituškin, A.G., Ivanov, L.D., Mel’nikov, M.S.: Incommensurability of the minimal linear measure with the length of a set. Dokl. Akad. Nauk SSSR 151, 1256–1259 (1963)

    MathSciNet  Google Scholar 

  40. Wulff-Nilsen, C.: Approximate distance oracles with improved query time. Preprint (2011), available at http://arxiv.org/abs/1202.2336

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Naor.

Additional information

M.M. was partially supported by ISF grants 221/07 and 93/11, BSF grants 2006009 and 2010021, and a gift from Cisco Research Center. A.N. was partially supported by NSF grant CCF-0832795, BSF grants 2006009 and 2010021, and the Packard Foundation. Part of this work was completed when M.M. was visiting Microsoft Research and University of Washington, and A.N. was visiting the Discrete Analysis program at the Isaac Newton Institute for Mathematical Sciences and the Quantitative Geometry program at the Mathematical Sciences Research Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendel, M., Naor, A. Ultrametric subsets with large Hausdorff dimension. Invent. math. 192, 1–54 (2013). https://doi.org/10.1007/s00222-012-0402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0402-7

Mathematics Subject Classification

Navigation