Skip to main content
Log in

The planetary N-body problem: symplectic foliation, reductions and invariant tori

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The 6n-dimensional phase space of the planetary (1+n)-body problem (after the classical reduction of the total linear momentum) is shown to be foliated by symplectic leaves of dimension (6n−2) invariant for the planetary Hamiltonian \({\mathcal{H}}\). Such foliation is described by means of a new global set of Darboux coordinates related to a symplectic (partial) reduction of rotations. On each symplectic leaf \({\mathcal{H}}\) has the same form and it is shown to preserve classical symmetries. Further sets of Darboux coordinates may be introduced on the symplectic leaves so as to achieve a complete (total) reduction of rotations. Next, by explicit computations, it is shown that, in the reduced settings, certain degeneracies are removed. In particular, full torsion is checked both in the partially and totally reduced settings. As a consequence, a new direct proof of Arnold’s theorem (Arnold in Russ. Math. Surv. 18(6):85–191, 1963) on the stability of planetary system (both in the partially and in the totally reduced setting) is easily deduced, producing Diophantine Lagrangian invariant tori of dimension (3n−1) and (3n−2). Finally, elliptic lower dimensional tori bifurcating from the secular equilibrium are easily obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullah, K., Albouy, A.: On a strange resonance noticed by M. Herman. Regul. Chaotic Dyn. 6(4), 421–432 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surv. 18(6), 85–191 (1963)

    Article  Google Scholar 

  3. Biasco, L., Chierchia, L., Valdinoci, E.: Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch. Ration. Mech. Anal. 170, 91–135 (2003). See also: Corrigendum. Arch. Ration. Mech. Anal. 180, 507–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biasco, L., Chierchia, L., Valdinoci, E.: n-Dimensional elliptic invariant tori for the planar (n+1)-body problem. SIAM J. Math. Anal. 37(5), 1560–1588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Celletti, A., Chierchia, L.: Construction of stable periodic orbits for the spin-orbit problem of celestial mechanics. Regul. Chaotic Dyn. 3(3), 107–121 (1998). J. Moser at 70 (Russian)

    Article  MathSciNet  MATH  Google Scholar 

  6. Celletti, A., Chierchia, L.: KAM tori for N-body problems: a brief history. Celest. Mech. Dyn. Astron. 95(1–4), 117–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Celletti, A., Chierchia, L.: KAM stability and celestial mechanics. Mem. Am. Math. Soc. 187(878), viii+134 (2007)

    MathSciNet  Google Scholar 

  8. Chierchia, L., Pinzari, G.: Deprit’s reduction of the nodes revisited. Celest. Mech. Dyn. Astron. (2011, in press). doi:10.1007/s10569-010-9329-8. Preprint, http://www.mat.uniroma3.it/users/chierchia

  9. Chierchia, L., Pinzari, G.: Planetary Birkhoff normal forms. Preprint, http://www.mat.uniroma3.it/users/chierchia (2010)

  10. Chierchia, L., Pinzari, G.: Properly-degenerate KAM theory (following V.I. Arnold). Discrete Contin. Dyn. Syst. 3(4), 545–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chierchia, L., Pusateri, F.: Analytic Lagrangian tori for the planetary many-body problem. Ergod. Theory Dyn. Syst. 29(3), 849–873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deprit, A.: Elimination of the nodes in problems of n bodies. Celest. Mech. 30(2), 181–195 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 15(1), 115–147 (1989)

    MathSciNet  Google Scholar 

  14. Féjoz, J.: Quasiperiodic motions in the planar three-body problem. J. Differ. Equ. 183(2), 303–341 (2002)

    Article  MATH  Google Scholar 

  15. Féjoz, J.: Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman). Ergod. Theory Dyn. Syst. 24(5), 1521–1582 (2004)

    Article  MATH  Google Scholar 

  16. Féjoz, J.: Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman). Version révisée de l’article paru dans le Michael Herman Memorial Issue. Ergod. Theory Dyn. Syst. 24(5), 1521–1582 (2004). Available at http://people.math.jussieu.fr/fejoz/articles.html

    Article  MATH  Google Scholar 

  17. Herman, M.R.: Torsion du problème planètaire, edited by J. Fejóz in 2009. Available in the electronic ‘Archives Michel Herman’ at http://www.college-de-france.fr/default/EN/all/equ_dif/archives_michel_herman.htm

  18. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  19. Jacobi, C.G.J.: Sur l’élimination des noeuds dans le problème des trois corps. Astron. Nachr. XX, 81–102 (1842)

    Google Scholar 

  20. Kuksin, S.B.: Perturbation theory of conditionally periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg-de Vries equation. Mat. Sb. (N.S.) 136(7), 396–412 (1988)

    Google Scholar 

  21. Malige, F., Robutel, P., Laskar, J.: Partial reduction in the n-body planetary problem using the angular momentum integral. Celest. Mech. Dyn. Astron. 84(3), 283–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Melnikov, V.K.: On certain cases of conservation of almost periodic motions with a small change of the Hamiltonian function. Dokl. Akad. Nauk SSSR 165, 1245–1248 (1965)

    MathSciNet  Google Scholar 

  23. Pinzari, G.: On the Kolmogorov set for many–body problems. PhD thesis, Università Roma Tre, April 2009. http://www.mat.uniroma3.it/users/chierchia/TESI/PhD_Thesis_GPinzari.pdf

  24. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Robutel, P.: Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions. Celest. Mech. Dyn. Astron. 62(3), 219–261 (1995). See also: Erratum, Celest. Mech. Dyn. Astron. 84(3), 317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rüssmann, H.: Nondegeneracy in the perturbation theory of integrable dynamical systems. In: Stochastics, Algebra and Analysis in Classical and Quantum Dynamics, Marseille, 1988. Math. Appl., vol. 59, pp. 211–223. Kluwer Academic, Dordrecht (1990)

    Google Scholar 

  27. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer, Berlin (1995). Reprint of the 1971 edition

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Chierchia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chierchia, L., Pinzari, G. The planetary N-body problem: symplectic foliation, reductions and invariant tori. Invent. math. 186, 1–77 (2011). https://doi.org/10.1007/s00222-011-0313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0313-z

Mathematics Subject Classification (2000)

Navigation