Skip to main content
Log in

A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We characterize sequences of numbers (a n ) such that ∑n≥1 a n Φ n converges a.e. for any orthonormal system (Φ n ) in any L 2-space. In our criteria we use the set A={∑mn||a m |2;n≥1}, majorizing measures on A, and new descriptions of the complexity of A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bednorz, W.: A note on the Men’shov-Rademacher inequality. Bull. Pol. Acad. Sci. 54, 89–93 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bednorz, W.: A theorem on majorizing measures. Ann. Probab. 34, 1771–1781 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bednorz, W.: On Talagrand’s admissible net approach to majorizing measure and boundedness of stochastic processes. Bull. Pol. Acad. Sci. 56, 83–91 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Choobanyan, S., Levental, S., Salehi, H.: On the constant in Men’shov-Rademacher inequality. J. Inequal. Appl. 2006, 1–7 (2006)

    Article  Google Scholar 

  5. Fristedt, B., Gray, L.: A Modern Approach to Probability Theory. Birkhäuser, Boston (1977)

    Google Scholar 

  6. Gaposhkin, V.F.: On convergence of orthogonal series. Dokl. Akad. Nauk SSSR 159, 243–246 (1964) (in Russian)

    MathSciNet  Google Scholar 

  7. Kashin, B.S., Saakyan, A.A.: Orthogonal Series. Translations of Mathematical Monographs, vol. 75. Am. Math. Soc., Providence (1989)

    MATH  Google Scholar 

  8. Olejnik, J.: On a construction of majorizing measures on subsets of \(\Bbb{R}^{n}\) with special metrics. Studia Math., to appear

  9. Paley, R., Zygmund, A.: A note on analytic functions in the unit circle. Proc. Camb. Philos. Soc. 28, 266–272 (1932)

    Article  Google Scholar 

  10. Paszkiewicz, A.: A new proof of the Rademacher-Menshov theorem. Acta Sci. Math. (Szeged) 71, 631–642 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Paszkiewicz, A.: On complete characterization of coefficients of a.e. convergent orthogonal series. Preprint 2008/03, Faculty of Mathematics and Computer Science, University of Łódź

  12. Pisier, G.: Conditions d’entropie assurant la continuité de certains processus. Séminaire d’Analyse Functionnelle 1979–1980. Exposés XIII–XIV. Ecole Polytechnique, Palaiseau

  13. Solodov, A.P.: Concerning an example of Paskiewich. Math. Notes 78, 258–263 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Talagrand, M.: Regularity of Gaussian processes. Acta Math. 159, 99–149 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Talagrand, M.: Sample boundedness of stochastic processes under increment conditions. Ann. Probab. 18, 1–49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Talagrand, M.: Upper and Lower Bounds of Stochastic Processes. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Talagrand, M.: Convergence of orthogonal series using stochastic processes. Preprint

  18. Tandori, K.: Über die Konvergenz der Orthogonalreihen. Acta Sci. Math. (Szeged) 24, 139–151 (1963)

    MATH  MathSciNet  Google Scholar 

  19. Weber, M.: Some theorems related to almost sure convergence of orthogonal series. Indag. Math., N.S. 11, 293–311 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Weber, M.: Uniform bounds under increment conditions. Trans. Am. Math. Soc. 358, 911–936 (2005)

    Article  Google Scholar 

  21. Bednorz, W.: Majorizing measures on metric spaces. C. R., Math., to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Paszkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paszkiewicz, A. A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures. Invent. math. 180, 55–110 (2010). https://doi.org/10.1007/s00222-009-0226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0226-2

Mathematics Subject Classification (2000)

Navigation