Skip to main content
Log in

The quantum McKay correspondence for polyhedral singularities

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let G be a polyhedral group, namely a finite subgroup of SO(3). Nakamura’s G-Hilbert scheme provides a preferred Calabi-Yau resolution Y of the polyhedral singularity ℂ3/G. The classical McKay correspondence describes the classical geometry of Y in terms of the representation theory of G. In this paper we describe the quantum geometry of Y in terms of R, an ADE root system associated to G. Namely, we give an explicit formula for the Gromov-Witten partition function of Y as a product over the positive roots of R. In terms of counts of BPS states (Gopakumar-Vafa invariants), our result can be stated as a correspondence: each positive root of R corresponds to one half of a genus zero BPS state. As an application, we use the Crepant Resolution Conjecture to provide a full prediction for the orbifold Gromov-Witten invariants of [ℂ3/G].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, D., Graber, T., Vistoli, A.: Algebraic orbifold quantum products. In: Orbifolds in Mathematics and Physics, Madison, WI, 2001. Contemp. Math., vol. 310, pp. 1–24. Amer. Math. Soc., Providence (2002)

    Google Scholar 

  2. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254(2), 425–478 (2005). arXiv:hep-th/0305132

    Article  MATH  Google Scholar 

  3. Behrend, K., Bryan, J.: Super-rigid Donaldson-Thomas invariants. Math. Res. Lett. 14(4), 559–571 (2007). arXiv:math.AG/0601203

    MathSciNet  MATH  Google Scholar 

  4. Boissiere, S., Sarti, A.: Contraction of excess fibres between the McKay correspondences in dimensions two and three. Ann. Inst. Fourier 57(6), 1839–1861 (2007). arXiv:math.AG/0504360

    MathSciNet  MATH  Google Scholar 

  5. Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryan, J., Gholampour, A.: Hurwitz-Hodge integrals, the E 6 and D 4 root systems, and the Crepant Resolution Conjecture. Adv. Math. 221(4), 1047–1068 (2009). arXiv:0708.4244

    Article  MathSciNet  MATH  Google Scholar 

  7. Bryan, J., Gholampour, A.: Root systems and the quantum cohomology of ADE resolutions. Algebra Number Theory 2(4), 369–390 (2008). arXiv:0707.1337

    Article  MathSciNet  MATH  Google Scholar 

  8. Bryan, J., Graber, T.: The crepant resolution conjecture. In: Algebraic Geometry—Seattle 2005. Proc. Sympos. Pure Math., vol. 80, pp. 23–42. Amer. Math. Soc., Providence (2009). arXiv:math.AG/0610129

    Google Scholar 

  9. Bryan, J., Graber, T., Pandharipande, R.: The orbifold quantum cohomology of C 2/Z 3 and Hurwitz Hodge integrals. J. Algebraic Geom. 17, 1–28 (2008). arXiv:math.AG/0510335

    MathSciNet  MATH  Google Scholar 

  10. Bryan, J., Katz, S., Leung, N.C.: Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds. J. Algebraic Geom. 10(3), 549–568 (2001). arXiv:math.AG/9911056

    MathSciNet  MATH  Google Scholar 

  11. Bryan, J., Pandharipande, R.: BPS states of curves in Calabi-Yau 3-folds. Geom. Topol. 5, 287–318 (2001) (electronic). arXiv:math.AG/0009025

    Article  MathSciNet  MATH  Google Scholar 

  12. Bryan, J., Pandharipande, R.: The local Gromov-Witten theory of curves. J. Am. Math. Soc. 21, 101–136 (2008). arXiv:math.AG/0411037

    Article  MathSciNet  MATH  Google Scholar 

  13. Cavalieri, R.: Generating functions for Hurwitz-Hodge integrals. math/0608590

  14. Chen, W., Ruan, Y.: Orbifold Gromov-Witten theory. In: Orbifolds in Mathematics and Physics, Madison, WI, 2001. Contemp. Math., vol. 310, pp. 25–85. Amer. Math. Soc., Providence (2002)

    Google Scholar 

  15. Chiodo, A.: Towards an enumerative geometry of the moduli space of twisted curves and r-th roots. arXiv:math/0607324

  16. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: The crepant resolution conjecture for type A surface singularities. arXiv:0704.2034v1 [math.AG]

  17. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: Wall-crossings in toric Gromov-Witten theory I: crepant examples. arXiv:math.AG/0611550

  18. Coates, T., Ruan, Y.: Quantum cohomology and crepant resolutions: a conjecture. arXiv:0710.5901

  19. Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry. Amer. Math. Soc., Providence (1999)

    MATH  Google Scholar 

  20. Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992)

    MATH  Google Scholar 

  21. Fulton, W., Harris, J.: Representation Theory. Springer, New York (1991). A first course, Readings in Mathematics

    MATH  Google Scholar 

  22. Gopakumar, R., Vafa, C.: M-theory and topological strings–II. hep-th/9812127

  23. Hironaka, H.: Triangulations of algebraic sets. In: Algebraic Geometry, Humboldt State Univ., Arcata, Calif., 1974. Proc. Sympos. Pure Math., vol. 29, pp. 165–185. Amer. Math. Soc., Providence (1975)

    Google Scholar 

  24. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1. Amer. Math. Soc., Providence (2003). With a preface by Vafa

    Google Scholar 

  25. Katz, S., Morrison, D.R.: Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups. J. Algebraic Geom. 1(3), 449–530 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Li, A.-M., Ruan, Y.: Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds. Invent. Math. 145(1), 151–218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, J., Liu, C.-C.M., Liu, K., Zhou, J.: A mathematical theory of the topological vertex. arXiv:math/0408426

  28. Lojasiewicz, S.: Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa (3) 18, 449–474 (1964)

    MathSciNet  MATH  Google Scholar 

  29. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory. I. Compos. Math. 142(5), 1263–1285 (2006). arXiv:math.AG/0312059

    Article  MathSciNet  MATH  Google Scholar 

  30. Maulik, D., Pandharipande, R.: New calculations in Gromov-Witten theory. arXiv:math.AG/0601395

  31. McKay, J.: Graphs, singularities, and finite groups. In: The Santa Cruz Conference on Finite Groups, Univ. California, Santa Cruz, Calif., 1979. Proc. Sympos. Pure Math., vol. 37, pp. 183–186. Amer. Math. Soc., Providence (1980)

    Google Scholar 

  32. Morrison, D.R.: The birational geometry of surfaces with rational double points. Math. Ann. 271(3), 415–438 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nakamura, I.: Hilbert schemes of Abelian group orbits. J. Algebraic Geom. 10(4), 757–779 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Pandharipande, R., Thomas, R.: Curve counting via stable pairs in the derived category. arXiv:0707.2348

  35. Tseng, H.-H., Johnson, P., Pandharipande, R.: Abelian Hurwitz-Hodge integrals. arXiv:0803.0499

  36. Reid, M.: La correspondance de McKay. Astérisque 276, 53–72 (2002). Séminaire Bourbaki, vol. 1999/2000

    Google Scholar 

  37. Ruan, Y.: The cohomology ring of crepant resolutions of orbifolds. In: Gromov-Witten Theory of Spin Curves and Orbifolds. Contemp. Math., vol. 403, pp. 117–126. Amer. Math. Soc., Providence (2006)

    Google Scholar 

  38. Zhou, J.: Crepant resolution conjecture in all genera for type A singularities. arXiv:0811.2023

  39. Zhou, J.: On computations of Hurwitz-Hodge integrals. arXiv:0710.1679

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Bryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryan, J., Gholampour, A. The quantum McKay correspondence for polyhedral singularities. Invent. math. 178, 655–681 (2009). https://doi.org/10.1007/s00222-009-0212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0212-8

Keywords

Navigation