Skip to main content
Log in

Adaptation to proprioceptive targets following visuomotor adaptation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the following study, we asked if reaches to proprioceptive targets are updated following reach training with a gradually introduced visuomotor perturbation. Subjects trained to reach with distorted hand-cursor feedback, such that they saw a cursor that was rotated or translated relative to their actual hand movement. Following reach training trials with the cursor, subjects reached to Visual (V), Proprioceptive (P) and Visual + Proprioceptive (VP) targets with no visual feedback of their hand. Comparison of reach endpoints revealed that reaches to VP targets followed similar trends as reaches to P targets, regardless of the training distortion introduced. After reaching with a rotated cursor, subjects adapted their reaches to all target types in a similar manner. However, after reaching with a translated cursor, subjects adapted their reach to V targets only. Taken together, these results show that following training with a visuomotor distortion, subjects primarily rely on proprioceptive information when reaching to VP targets. Furthermore, results indicate that reach adaptation to P targets depends on the distortion presented. Training with a rotation distortion leads to changes in reaches to both V and P targets, while a translation distortion, which introduces a constant discrepancy between visual and proprioceptive estimates of hand position throughout the reach, affects changes to V but not P targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baraduc P, Wolpert DM (2002) Adaptation to a visuomotor shift depends on the starting posture. J Neurophysiol 88:973–981

    Article  PubMed  Google Scholar 

  • Bernier PM, Chua R, Franks IM (2005) Is proprioception calibrated during visually guided movements? Exp Brain Res 167:292–296

    Article  PubMed  Google Scholar 

  • Bernier PM, Gauthier GM, Blouin (2007) Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets. J Neurophysiol 98:1815–1819

    Article  PubMed  Google Scholar 

  • Berniker M, Kording K (2008) Estimating the sources of motor errors for adaptation and generalization. Nat Neurosci 11:1454–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block H, Bastian A (2010) Sensory reweighting in targeted reaching: Effects of conscious effort, error history, and target salience. J Neurophysiol 103:206–217

    Article  PubMed  Google Scholar 

  • Block H, Bastian A (2011) Sensory weighting and realignment: independent compensatory processes. J Neurophysiol 106:59–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Block H, Bastian A (2012) Cerebellar involvement in motor but not sensory adaptation. Neuropsychologia 50(8):1766–1775

    Article  PubMed  PubMed Central  Google Scholar 

  • Buch ER, Young S, Contreras-Vidal JL (2003) Visuomotor adaptation in normal aging. Learn Memory 10:55–63

    Article  Google Scholar 

  • Clayton HA, Cressman EK, Henriques DY (2014) The effect of visuomotor adaptation on proprioceptive localization: the contributions of perceptual and motor changes. Exp Brain Res 232:2073–2086

    Article  PubMed  Google Scholar 

  • Craske B, Gregg SJ (1966) Prism after-effects: identical results for visual targets and unexposed limb. Nature 212:104–105

    Article  CAS  PubMed  Google Scholar 

  • Cressman EK, Henriques DY (2009) Sensory recalibration of hand position following visuomotor adaptation. J Neurophysiol 102:3505–3518

    Article  PubMed  Google Scholar 

  • Desmurget M, Pelisson D, Rossetti Y, Prablanc C (1998) From eye to hand: planning goal directed movements. Neurosci Biobehav R 22:761–788

    Article  CAS  Google Scholar 

  • Ernst M, Banks M (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Bulthoff H (2004) Merging the senses into robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  • Flanders M, Tillery SI, Soechting JF (1992) Early stages in a sensorimotor transformation. Behav Brain Sci 15:209–320

    Article  Google Scholar 

  • Ghahramani Z, Wolpert D, Jordan M (1997) Computational models of sensorimotor integration. Adv Psychol 119:117–147

    Article  Google Scholar 

  • Harris CS (1963) Adaptation to displaced vision: visual, motor, or proprioceptive change? Science 140:812–813

    Article  CAS  PubMed  Google Scholar 

  • Harris CS (1965) Perceptual adaptation to inverted, reversed, and displaced Vision. Psychol Rev 72:419–444

    Article  CAS  PubMed  Google Scholar 

  • Hatada Y, Miall RC, Rossetti Y (2006) Long lasting after-effect of a single prism adaptation: directionally biased shift in proprioception and late onset shift of internal egocentric reference frame. Exp Brain Res 174:189–198

    Article  PubMed  Google Scholar 

  • Hay JC, Pick HL Jr (1966) Visual and proprioceptive adaptation to optical displacement of the visual stimulus. J Exp Psychol 71:150–158

    Article  CAS  PubMed  Google Scholar 

  • Helbig H, Ernst M (2007) Optimal integration of shape information from vision and touch. Exp Brain Res 179:595–606

    Article  PubMed  Google Scholar 

  • Jeannerod M (1988) The Neural and Behavioural Organization of Goal-Directed Movements. Clarendon Press, Oxford

    Google Scholar 

  • Khanafer S, Cressman EK (2014) Sensory integration during reaching: the effects of manipulating visual target availability. Exp Brain Res 232:3833–3846

    Article  PubMed  Google Scholar 

  • Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247

    Article  PubMed  Google Scholar 

  • Krakauer JW (2009) Motor learning and consolidation: the case of visuomotor rotation. Adv Exp Med Biol 629:405–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    CAS  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119:1199–1211

    Article  PubMed  Google Scholar 

  • Mon-Williams M, Wann J, Jenkinson M, Rushton K (1997) Synaesthesia in the normal limb. Proc Biol Sci 264:1007–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafa AA, Salomonczyk D, Cressman EK, Henriques DY (2014) Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand. Exp Brain Res 232:1639–1651

    Article  PubMed  Google Scholar 

  • Redding GM, Wallace B (1993) Adaptive coordination and alignment of eye and hand. J Motor Behav 25:75–88

    Article  CAS  Google Scholar 

  • Redding GM, Wallace B (1996) Adaptive spatial alignment and strategic perceptual motor control. J Exp Psychol Hum Percept Perform 22:379–394

    Article  CAS  PubMed  Google Scholar 

  • Redding GM, Wallace B (2002) Strategic calibration and spatial alignment: A model from prism adaptation. J Motor Behav 33:401–412

    Article  Google Scholar 

  • Redding GM, Wallace B (2003) Dual prism adaptation: calibration or alignment? J Motor Behav 35:399–408

    Article  Google Scholar 

  • Redding GM, Rossetti Y, Wallace B (2005) Applications of prism adaptation: a tutorial in theory and method. Neurosci Biobehav R 29:431–444

    Article  Google Scholar 

  • Reuschel J, Drewing K, Henriques D, Rosler F, Fiehler K (2010) Optimal integration of visual and proprioceptive movement information for the perception of trajectory geometry. Exp Brain Res 201:853–862

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: Independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Sarlegna F, Sainburg R (2007) The effect of target modality on visual and proprioceptive contributions to the control of movement distance. Exp Brain Res 176:267–280

    Article  PubMed  Google Scholar 

  • Simani MC, McGuire LM, Sabes PN (2007) Visual-shift adaptation is composed of separable sensory and task-dependent effects. J Neurophysiol 98:2827–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijders HJ, Holmes NP, Spence C (2007) Direction-dependent integration of vision and proprioception in reaching under the influence of the mirror illusion. Neuropsychologia 45:496–505

    Article  PubMed  Google Scholar 

  • Sober S, Sabes P (2005) Flexible strategies for sensory integration during motor planning. Nat Neurosci 8:490–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JA, Ivry RB (2011) Flexible cognitive strategies during motor learning. PLoS Comp Biol 7:e10001096

    Article  Google Scholar 

  • Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34:3023–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnham EJ, Braun DA, Wolpert DM (2012) Facilitation of learning induced by both random and gradual visuomotor task variation. J Neurophysiol 107:1111–1122

    Article  PubMed  Google Scholar 

  • van Beers R, Sitting A, van Der Gon D (1996) How humans combine simultaneous proprioceptive and visual position information. Exp Brain Res 111:253–261

    Article  PubMed  Google Scholar 

  • van Beers R, Sitting A, van Der Gon J (1998) The precision of proprioceptive position sense. Exp Brain Res 122:367–377

    Article  PubMed  Google Scholar 

  • van Beers R, Sitting A, van Der Gon D (1999) Integration of proprioceptive and visual position-information: an experimentally supported model. J Neurophysiol 81:1355–1364

    Article  PubMed  Google Scholar 

  • van Beers R, Wolpert D, Haggard P (2002) When feeling is more important than seeing in sensorimotor adaptation. Curr Biol 12:834–837

    Article  PubMed  Google Scholar 

  • Vetter P, Goodbody SJ, Wolpert DM (1999) Evidence for an eye-centered spherical representation of the visuomotor map. Neurophysiology 81:935–939

    Article  CAS  PubMed  Google Scholar 

  • von Helmholtz HEF (1910) Handbuch der physiologischen optik, 3rd edn. Voss, Hamburg [Translated by Southall JPC (1962) Physiological optics, vol 3. Dover, New York]

  • Wang J, Sainburg RL (2005) Adaptation to visuomotor rotations remaps movement vectors, not final positions. J Neurosci 25:4024–4030

    Article  CAS  PubMed  Google Scholar 

  • Warren D, Schmitt T (1978) On the plasticity of visual-proprioceptive bias Effects. J Exp Psychol Hum Percept Perform 4:302–310

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Kording K (2010) Uncertainty of feedback and state estimation determines the speed of motor adaptation. Front Comput Neurosci 4:11

    PubMed  PubMed Central  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin K. Cressman.

Ethics declarations

Funding

Natural Sciences and Engineering Research Council (EKC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flannigan, J.C., Posthuma, R.J., Lombardo, J.N. et al. Adaptation to proprioceptive targets following visuomotor adaptation. Exp Brain Res 236, 419–432 (2018). https://doi.org/10.1007/s00221-017-5141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5141-y

Keywords

Navigation