Skip to main content

Advertisement

Log in

Improving postural control by applying mechanical noise to ankle muscle tendons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The application of subthreshold mechanical vibrations with random frequencies (white mechanical noise) to ankle muscle tendons is known to increase muscle proprioceptive information and to improve the detection of ankle movements. The aim of the present study was to analyze the effect of this mechanical noise on postural control, its possible modulation according to the sensory strategies used for postural control, and the consequences of increasing postural difficulty. The upright stance of 20 healthy young participants tested with their eyes closed was analyzed during the application of four different levels of noise and compared to that in the absence of noise (control) in three conditions: static, static on foam, and dynamic (sinusoidal translation). The quiet standing condition was conducted with the eyes open and closed to determine the subjects’ visual dependency to maintain postural stability. Postural performance was assessed using posturographic and motion analysis evaluations. The results in the static condition showed that the spectral power density of body sway significantly decreased with an optimal level of noise and that the higher the spectral power density without noise, the greater the noise effect, irrespective of visual dependency. Finally, noise application was ineffective in the foam and dynamic conditions. We conclude that the application of mechanical noise to ankle muscle tendons is a means to improve quiet standing only. These results suggest that mechanical noise stimulation may be more effective in more impaired populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • al-Falahe NA, Nagaoka M, Vallbo AB (1990) Response profiles of human muscle afferents during active finger movements. Brain 113(Pt 2):325–346

    Article  PubMed  Google Scholar 

  • Aniss AM, Diener HC, Hore J, Gandevia SC, Burke D (1990) Behavior of human muscle receptors when reliant on proprioceptive feedback during standing. J Neurophysiol 64:661–670

    CAS  PubMed  Google Scholar 

  • Bernard-Demanze L, Dumitrescu M, Jimeno P, Borel L, Lacour M (2009) Age-related changes in posture control are differentially affected by postural and cognitive task complexity. Curr Aging Sci 2:139–149

    Article  CAS  PubMed  Google Scholar 

  • Borel L, Lopez C, Péruch P, Lacour M (2008) Vestibular syndrome: a change in internal spatial representation. Neurophysiol Clin 38:375–389

    Article  CAS  PubMed  Google Scholar 

  • Cordo P, Inglis JT, Verschueren S et al (1996) Noise in human muscle spindles. Nature 383:769–770

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio I, Maganaris CN, Baltzopoulos V, Loram ID (2009) The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. J Physiol 587:2399–2416

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol 478(Pt 1):173–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick R, Burke D, Gandevia SC (1994) Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol 478(Pt 2):363–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Galica AM, Kang HG, Priplata AA et al (2009) Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture 30:383–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Goble DJ (2010) Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Phys Ther 90:1176–1184

    Article  PubMed  Google Scholar 

  • Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP (2009) Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev 33:271–278

    Article  PubMed  Google Scholar 

  • Goel R, Kofman I, Jeevarajan J, De Dios Y, Cohen HS, Bloomberg JJ, Mulavara AP (2015) Using low levels of stochastic vestibular stimulation to improve balance function. PLoS One 10:e0136335

    Article  PubMed  PubMed Central  Google Scholar 

  • Gravelle DC, Laughton CA, Dhruv NT, Katdare KD, Niemi JB, Lipsitz LA, Collins JJ (2002) Noise-enhanced balance control in older adults. Neuroreport 13:1853–1856

    Article  PubMed  Google Scholar 

  • Guerraz M, Yardley L, Bertholon P, Pollak L, Rudge P, Gresty MA, Bronstein AM (2001) Visual vertigo: symptom assessment, spatial orientation and postural control. Brain 124:1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Hay L, Bard C, Fleury M, Teasdale N (1996) Availability of visual and proprioceptive afferent messages and postural control in elderly adults. Exp Brain Res 108:129–139

    Article  CAS  PubMed  Google Scholar 

  • Hulliger M, Nordh E, Vallbo AB (1985) Discharge in muscle spindle afferents related to direction of slow precision movements in man. J Physiol 362:437–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavounoudias A, Roll R, Roll JP (1998) The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport 9(14):3247–3252

    Article  CAS  PubMed  Google Scholar 

  • Kelty-Stephen DG, Dixon JA (2013) Temporal correlations in postural sway moderate effects of stochastic resonance on postural stability. Hum Mov Sci 32:91–105

    Article  PubMed  Google Scholar 

  • Keshner EA, Slaboda JC, Day LL, Darvish K (2014) Visual conflict and cognitive load modify postural responses to vibrotactile noise. J Neuroeng Rehabil 11:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M (1997) Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Exp Brain Res 115:300–310

    Article  CAS  PubMed  Google Scholar 

  • Lacour M, Bernard-Demanze L, Dumitrescu M (2008) Posture control, aging, and attention resources: models and posture-analysis methods. Neurophysiol Clin 38:411–421

    Article  CAS  PubMed  Google Scholar 

  • Lee BC, Martin BJ, Ho A, Sienko KH (2013) Postural reorganization induced by torso cutaneous covibration. J Neurosci 33:7870–7876

    Article  CAS  PubMed  Google Scholar 

  • Lipsitz LA, Lough M, Niemi J, Travison T, Howlett H, Manor B (2015) A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Arch Phys Med Rehabil 96:432–439

    Article  PubMed  Google Scholar 

  • Magalhaes FH, Kohn AF (2012) Imperceptible electrical noise attenuates isometric plantar flexion force fluctuations with correlated reductions in postural sway. Exp Brain Res 217:175–186

    Article  PubMed  Google Scholar 

  • Magalhaes FH, Kohn AF (2014) Effectiveness of electrical noise in reducing postural sway: a comparison between imperceptible stimulation applied to the anterior and to the posterior leg muscles. Eur J Appl Physiol 114:1129–1141

    Article  PubMed  Google Scholar 

  • McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–426

    Article  CAS  PubMed  Google Scholar 

  • Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281

    Article  PubMed  Google Scholar 

  • Mulavara AP, Fiedler MJ, Kofman IS et al (2011) Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp Brain Res 210:303–312

    Article  PubMed  Google Scholar 

  • Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ (2003) Vibrating insoles and balance control in elderly people. Lancet 362:1123–1124

    Article  PubMed  Google Scholar 

  • Priplata AA, Patritti BL, Niemi JB et al (2006) Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol 59:4–12

    Article  PubMed  Google Scholar 

  • Ribot-Ciscar E, Roll JP (1998) Ago-antagonist muscle spindle inputs contribute together to joint movement coding in man. Brain Res 791:167–176

    Article  CAS  PubMed  Google Scholar 

  • Ribot-Ciscar E, Hospod V, Aimonetti JM (2013) Noise-enhanced kinaesthesia: a psychophysical and microneurographic study. Exp Brain Res 228:503–511

    Article  CAS  PubMed  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222

    Article  CAS  PubMed  Google Scholar 

  • Stephen DG, Wilcox BJ, Niemi JB, Franz JR, Kerrigan D, D’Andrea SE (2012) Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers. Gait Posture 36:537–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Tardieu C, Dumitrescu M, Giraudeau A, Blanc JL, Cheynet F, Borel L (2009) Dental occlusion and postural control in adults. Neurosci Lett 450:221–224

    Article  CAS  PubMed  Google Scholar 

  • Volgushev M, Eysel UT (2000) Neuroscience. Noise makes sense in neuronal computing. Science 290:1908–1909

    Article  CAS  PubMed  Google Scholar 

  • Young LR, Bernard-Demanze L, Dumitrescu M, Magnan J, Borel L, Lacour M (2012) Postural performance of vestibular loss patients under increased postural threat. J Vestib Res 22:129–138

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Ministère de l’Enseignement Supérieur et de la Recherche (CNRS UMR 7260). The authors would like to thank Michel Dumitrescu, Jacques Léonard and Nelson Martins Gomes for assistance. We also thank American Journal Experts for revising the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliane Borel.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borel, L., Ribot-Ciscar, E. Improving postural control by applying mechanical noise to ankle muscle tendons. Exp Brain Res 234, 2305–2314 (2016). https://doi.org/10.1007/s00221-016-4636-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4636-2

Keywords

Navigation