Skip to main content
Log in

Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson’s disease with levodopa-induced dyskinesias

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The pathophysiological mechanisms leading to dyskinesias in Parkinson’s disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN “on” and “off” levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12–19 Hz) and high (19–30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam M, Heissler HE, Schwabe K, Krauss JK (2012) Deep brain stimulation of the pedunculopontine tegmental nucleus modulates neuronal hyperactivity and enhanced beta oscillatory activity of the subthalamic nucleus in the rat 6-hydroxydopamine model. Exp Neurol 233:233–242. doi:10.1016/j.expneurol.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Capelle HH, Schwabe K, Krauss JK (2014) Effect of deep brain stimulation on levodopa-induced dyskinesias and striatal oscillatory local field potentials in a rat model of Parkinson’s disease. Brain Stimul 7:13–20. doi:10.1016/j.brs.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Frech F, Zamarbide I, Alegre M et al (2006) Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 129:1748–1757. doi:10.1093/brain/awl103

    Article  CAS  PubMed  Google Scholar 

  • Benhamou L, Cohen D (2014) Electrophysiological characterization of entopeduncular nucleus neurons in anesthetized and freely moving rats. Front Syst Neurosci 8:7. doi:10.3389/fnsys.2014.00007

    Article  PubMed  PubMed Central  Google Scholar 

  • Boraud T, Bezard E, Guehl D et al (1998) Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res 787:157–160

    Article  CAS  PubMed  Google Scholar 

  • Brazhnik E, Cruz AV, Avila I et al (2012) State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats. J Neurosci 32:7869–7880. doi:10.1523/JNEUROSCI.0943-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18:357–363. doi:10.1002/mds.10358

    Article  PubMed  Google Scholar 

  • Chen CC, Litvak V, Gilbertson T et al (2007) Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Exp Neurol 205:214–221. doi:10.1016/j.expneurol.2007.01.027

    Article  PubMed  Google Scholar 

  • Crowell AL, Ryapolova-Webb ES, Ostrem JL et al (2012) Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain 135:615–630. doi:10.1093/brain/awr332

    Article  PubMed  PubMed Central  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    CAS  PubMed  Google Scholar 

  • Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316. doi:10.1016/j.tins.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  • Halliday DM, Rosenberg JR, Amjad AM et al (1995) A framework for the analysis of mixed time series/point process data–theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    Article  CAS  PubMed  Google Scholar 

  • Hassani OK, Mouroux M, Feger J (1996) Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 72:105–115

    Article  CAS  PubMed  Google Scholar 

  • Hollerman JR, Grace AA (1992) Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Res 590:291–299

    Article  CAS  PubMed  Google Scholar 

  • Hutchison WD, Lozano AM, Tasker RR et al (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 113:557–563

    Article  CAS  PubMed  Google Scholar 

  • Kayser C, Montemurro MA, Logothetis NK, Panzeri S (2009) Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61:597–608. doi:10.1016/j.neuron.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  • Kuhn AA, Kupsch A, Schneider GH, Brown P (2006) Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 23:1956–1960. doi:10.1111/j.1460-9568.2006.04717.x

    Article  PubMed  Google Scholar 

  • Kuhn AA, Brucke C, Schneider GH et al (2008) Increased beta activity in dystonia patients after drug-induced dopamine deficiency. Exp Neurol 214:140–143. doi:10.1016/j.expneurol.2008.07.023

    Article  PubMed  Google Scholar 

  • Labarre D, Meissner W, Boraud T (2008) Measure of the regularity of events in stochastic point processes, application to neuron activity analysis. In: Acoustics, speech and signal processing, 2008. {ICASSP} 2008. {IEEE} International Conference on, pp 489–492

  • Lemaire N, Hernandez LF, Hu D et al (2012) Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by L-DOPA. Proc Natl Acad Sci U S A 109:18126–18131. doi:10.1073/pnas.1216403109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy R, Dostrovsky JO, Lang AE et al (2001) Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophysiol 86:249–260

    CAS  PubMed  Google Scholar 

  • Li Q, Ke Y, Chan DC et al (2012) Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76:1030–1041. doi:10.1016/j.neuron.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  • Lindemann C, Alam M, Krauss JK, Schwabe K (2013) Neuronal activity in the medial associative-limbic and lateral motor part of the rat subthalamic nucleus and the effect of 6-hydroxydopamine-induced lesions of the dorsolateral striatum. J Comp Neurol 521:3226–3240. doi:10.1002/cne.23342

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Azcarate J, Tainta M, Rodriguez-Oroz MC et al (2010) Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci 30:6667–6677. doi:10.1523/jneurosci.5459-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Lourens MAJ, Meijer HGE, Contarino MF et al (2013) Functional neuronal activity and connectivity within the subthalamic nucleus in Parkinson’s disease. Clin Neurophysiol 124:967–981. doi:10.1016/j.clinph.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  • Lozano AM, Lang AE, Levy R et al (2000) Neuronal recordings in Parkinson’s disease patients with dyskinesias induced by apomorphine. Ann Neurol 47:S141–S146

    Article  CAS  PubMed  Google Scholar 

  • Lundblad M, Andersson M, Winkler C et al (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132

    Article  CAS  PubMed  Google Scholar 

  • Magill PJ, Bolam JP, Bevan MD (2001) Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106:313–330

    Article  CAS  PubMed  Google Scholar 

  • Marceglia S, Foffani G, Bianchi AM et al (2006) Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson’s disease. J Physiol 571:579–591. doi:10.1113/jphysiol.2005.100271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marceglia S, Bianchi AM, Baselli G et al (2007) Interaction between rhythms in the human basal ganglia: application of bispectral analysis to local field potentials. IEEE Trans Neural Syst Rehabil Eng 15:483–492. doi:10.1109/tnsre.2007.907893

    Article  PubMed  Google Scholar 

  • Marceglia S, Fiorio M, Foffani G et al (2009) Modulation of beta oscillations in the subthalamic area during action observation in Parkinson’s disease. Neuroscience 161:1027–1036. doi:10.1016/j.neuroscience.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  • Marin C, Aguilar E, Bonastre M (2008) Effect of locus coeruleus denervation on levodopa-induced motor fluctuations in hemiparkinsonian rats. J Neural Transm 115:1133–1139. doi:10.1007/s00702-008-0060-5

    Article  CAS  PubMed  Google Scholar 

  • Marin C, Aguilar E, Mengod G et al (2009) Effects of early vs. late initiation of levodopa treatment in hemiparkinsonian rats. Eur J Neurosci 30:823–832. doi:10.1111/j.1460-9568.2009.06877.x

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MM, Moore-Kochlacs C, Gu X et al (2011) Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc Natl Acad Sci U S A 108:11620–11625. doi:10.1073/pnas.1107748108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner W, Ravenscroft P, Reese R et al (2006) Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiol Dis 22:586–598. doi:10.1016/j.nbd.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  • Merello M, Lees AJ, Balej J et al (1999) GPi firing rate modification during beginning-of-dose motor deterioration following acute administration of apomorphine. Mov Disord 14:481–483

    Article  CAS  PubMed  Google Scholar 

  • Ni ZG, Bouali-Benazzouz R, Gao DM et al (2001) Time-course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats. Brain Res 899:142–147

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M et al (2000) Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: problems with the current model. Ann Neurol 47:S22–S32 discussion S32–S34

    CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Javier Blesa F, Guridi J (2006) The globus pallidus pars externa and Parkinson’s disease. Ready for prime time? Exp Neurol 202:1–7. doi:10.1016/j.expneurol.2006.07.004

    Article  PubMed  Google Scholar 

  • Papa SM, Desimone R, Fiorani M, Oldfield EH (1999) Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Ann Neurol 46:732–738

    Article  CAS  PubMed  Google Scholar 

  • Pavlides A, Hogan SJ, Bogacz R (2012) Improved conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. Eur J Neurosci 36:2229–2239. doi:10.1111/j.1460-9568.2012.08105.x

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press Inc, San Diego

    Google Scholar 

  • Picconi B, Pisani A, Barone I et al (2005) Pathological synaptic plasticity in the striatum: implications for Parkinson’s disease. Neurotoxicology 26:779–783. doi:10.1016/j.neuro.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  • Priori A, Foffani G, Pesenti A et al (2004) Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 189:369–379. doi:10.1016/j.expneurol.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  • Ray NJ, Jenkinson N, Wang S et al (2008) Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol 213:108–113. doi:10.1016/j.expneurol.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz MC, Rodriguez M, Guridi J et al (2001) The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz MC, Lopez-Azcarate J, Garcia-Garcia D et al (2011) Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain 134:36–49. doi:10.1093/brain/awq301

    Article  PubMed  Google Scholar 

  • Rumpel R, Alam M, Klein A et al (2013) Neuronal firing activity and gene expression changes in the subthalamic nucleus after transplantation of dopamine neurons in hemiparkinsonian rats. Neurobiol Dis 59:230–243

    Article  CAS  PubMed  Google Scholar 

  • Sharott A, Magill PJ, Harnack D et al (2005) Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur J Neurosci 21:1413–1422. doi:10.1111/j.1460-9568.2005.03973.x

    Article  PubMed  Google Scholar 

  • Shimamoto SA, Ryapolova-Webb ES, Ostrem JL et al (2013) Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson’s disease. J Neurosci 33:7220–7233. doi:10.1523/jneurosci.4676-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JA, Lanctin D, Ince NF, Abosch A (2014) Clinical implications of local field potentials for understanding and treating movement disorders. Stereotact Funct Neurosurg 92:251–263. doi:10.1159/000364913

    Article  PubMed  Google Scholar 

  • Von Wrangel C, Schwabe K, John N et al (2015) The rotenone-induced rat model of Parkinson’s disease: behavioral and electrophysiological findings. Behav Brain Res 279:52–61. doi:10.1016/j.bbr.2014.11.002

    Article  CAS  Google Scholar 

  • Weinberger M, Mahant N, Hutchison WD et al (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96:3248–3256. doi:10.1152/jn.00697.2006

    Article  PubMed  Google Scholar 

  • Weinberger M, Hutchison WD, Alavi M et al (2012) Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 123:358–368. doi:10.1016/j.clinph.2011.07.029

    Article  PubMed  Google Scholar 

  • Wichmann T, Dostrovsky JO (2011) Pathological basal ganglia activity in movement disorders. Neuroscience 198:232–244. doi:10.1016/j.neuroscience.2011.06.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to China Scholarship Council (CNC), for their student fellowship to X. Jin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxing Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Schwabe, K., Krauss, J.K. et al. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson’s disease with levodopa-induced dyskinesias. Exp Brain Res 234, 1105–1118 (2016). https://doi.org/10.1007/s00221-015-4532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4532-1

Keywords

Navigation