Skip to main content
Log in

Deaf, blind or deaf-blind: Is touch enhanced?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When someone looses one type of sensory input, s/he may compensate by using the sensory information conveyed by other senses. To verify whether loosing a sense or two has consequences on a spared sensory modality, namely touch, and whether these consequences depend on the type of sensory loss, we investigated the effects of deafness and blindness on temporal and spatial tactile tasks in deaf, blind and deaf-blind people. Deaf and deaf-blind people performed the spatial tactile task better than the temporal one, while blind and controls showed the opposite pattern. Deaf and deaf-blind participants were impaired in temporal discrimination as compared to controls, while deaf-blind individuals outperformed blind participants in the spatial tactile task. Overall, sensory-deprived participants did not show an enhanced tactile performance. We speculate that discriminative touch is not so relevant in humans, while social touch is. Probably, more complex tactile tasks would have revealed an increased performance in sensory-deprived people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. 0 = normal vision, 1 = residual vision between 2/10 and 3/10 dioptres and/or residual binocular perimeter between 50 % and 60 %; 2 = residual vision between 1/10 and 2/10 dioptres and/or residual binocular perimeter between 30 and 50 %; 3 = residual vision <1/10 dioptres and/or residual binocular perimeter <10 %; 5 = complete blindness.

References

  • Alary F, Duquette M, Goldstein R, Chapman CE, Voss P, Buissonière-Ariza La, Lepore F (2009) Tactile acuity in the blind: a closer look reveals superiority over the sighted in some but not all cutaneous tasks. Neuropsychologia 47:2037–2043

    Article  PubMed  Google Scholar 

  • Arnold P, Heiron K (2002) Tactile memory of deaf-blind adults on four tasks. Scand J Psychol 43:73–79

    Article  PubMed  Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-5, 2014. http://CRAN.R-project.org/package=lme4

  • Bolognini N, Papagno C, Moroni D, Maravita A (2010) Tactile temporal processing in the auditory cortex. J Cogn Neurosci 22:1201–1211

    Article  PubMed  Google Scholar 

  • Bolognini N, Cecchetto C, Geraci C, Maravita A, Pascual-Leone A, Papagno C (2012) Hearing shapes our perception of time: temporal discrimination of tactile stimuli in deaf people. J Cogn Neurosci 24:276–286

    Article  PubMed  Google Scholar 

  • Bolognini N, Convento S, Rossetti A, Merabet LB (2013) Multisensory processing after a brain damage: clues on post-injury crossmodal plasticity from neuropsychology. Neurosci Biobehav Rev 37:269–278

    Article  PubMed  Google Scholar 

  • Calvert GA, Thesen T (2004) Multisensory integration: methodological approaches and emerging principles in the human brain. J Physiol 98:191–205

    Google Scholar 

  • Carvill S (2001) Sensory impairment, intellectual disability and psychiatry. J Intellect Disabil Res 45:467–483

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo Z, Lega C, Cecchetto C, Papagno C (2014) Auditory deprivation affects biases of visuospatial attention as measured by line bisection. Exp Brain Res 232:2767–2773

    Article  PubMed  Google Scholar 

  • Cattaneo Z, Cecchetto C, Papagno C (2015) Deaf individuals show a leftward bias in numerical bisection. Perception. doi:10.1177/0301006615596915

    PubMed  Google Scholar 

  • Cohen J (1973) Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ Psychol Meas 33:107–112

    Article  Google Scholar 

  • Cuevas I, Plaza P, Rombaux P, De Volder AG, Renier L (2009) Odour discrimination and identification are improved in early blindness. Neuropsychologia 47:3079–3083

    Article  PubMed  Google Scholar 

  • De Rosario-Martinez H (2015) phia: post-hoc interaction analysis. R package version 0.2-0. http://CRAN.R-project.org/package=phia

  • Dunbar RIM (2010) The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci Behav Rev 34:260–268

    Article  CAS  Google Scholar 

  • Dye MW, Hauser PC, Bavelier D (2009) Is visual selective attention in deaf individuals enhanced or deficient? The case of the useful field of view. PLoS One 4:e5640

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallace A, Spence C (2010) The science of interpersonal touch: an overview. Neurosci Biobehav Rev 34:246–259

    Article  PubMed  Google Scholar 

  • Gallace A, Spence C (2014) In touch with the future: the sense of touch from cognitive neuroscience to virtual reality. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grant AC, Thiagarajah MC, Sathian K (2000) Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. Percept Psychophys 62:301–312

    Article  PubMed  CAS  Google Scholar 

  • Green D, Swets J (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Guest S, Mehrabyan A, Ackerley R, McGlone F, Phillips N, Essick G (2014) Tactile experience does not ameliorate age-related reductions in sensory function. Exp Aging Res 40:81–106

    Article  PubMed  Google Scholar 

  • Hauthal N, Neumann MF, Schweinberger SR (2012) Attentional spread in deaf and hearing participants: face and object distractor processing under perceptual load. Atten Percept Psychophys 74:1312–1320

    Article  PubMed  Google Scholar 

  • Hauthal N, Sandmann P, Debener S, Thorne JD (2013) Visual movement perception in deaf and hearing individuals. Adv Cogn Psychol 9(2):53

    Article  PubMed  PubMed Central  Google Scholar 

  • Heimler B, Pavani F (2014) Response speed advantage for vision does not extend to touch in early deaf adults. Exp Brain Res 232:1335–1341

    Article  PubMed  Google Scholar 

  • Heimler B, Weisz N, Collignon O (2014) Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience 283:44–63

    Article  PubMed  CAS  Google Scholar 

  • Heimler B, van Zoest W, Baruffaldi F, Donk M, Rinaldi P, Caselli MC, Pavani F (2015) Finding the balance between capture and control: oculomotor selection in early deaf adults. Brain Cogn 96:12–27

    Article  PubMed  Google Scholar 

  • Heming JE, Brown LN (2005) Sensory temporal processing in adults with early hearing loss. Brain Cogn 59:173–182

    Article  PubMed  Google Scholar 

  • Hertenstein MJ (2002) Touch: its communicative functions in infancy. Hum Dev 45:70–94

    Article  Google Scholar 

  • Janssen MJ, Nota S, Eling PATM, Ruijssenaars WAJJM (2007) The advantage of encoding tactile information for a woman with congenital deaf-blindness. J Vis Imp Blind 101:653–656

    Google Scholar 

  • Kenneth S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution in humans. Curr Biol 11:1188–1191

    Article  Google Scholar 

  • Lejeune F, Berne-Audéoud F, Marcus L, Debillon T, Gentaz E (2014) The effect of postnatal age on the early tactile manual abilities of preterm infants. Early Hum Dev 90:259–264

    Article  PubMed  Google Scholar 

  • Levänen S, Hamdorf D (2001) Feeling vibrations: enhanced tactile sensitivity in congenitally deaf humans. Neurosci Lett 301:75–77

    Article  PubMed  Google Scholar 

  • Lewald J (2013) Exceptional ability of blind humans to hear sound motion: implications for the emergence of auditory space. Neuropsychologia 51:181–186

    Article  PubMed  Google Scholar 

  • Mast F, Frings C, Spence C (2014) Response interference in touch, vision, and crossmodally: beyond the spatial dimension. Exp Brain Res 232:2325–2336

    Article  PubMed  Google Scholar 

  • Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11:44–52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Neville H, Bavelier D (2002) Human brain plasticity: evidence from sensory deprivation and altered language experience. Prog Brain Res 138:177–188

    Article  PubMed  Google Scholar 

  • Norman JF, Bartholomew AN (2011) Blindness enhances tactile acuity and haptic 3-D shape discrimination. Atten Percept Psychophys 73:2323–2331

    Article  PubMed  Google Scholar 

  • Norman JF, Crabtree CE, Norman HF, Moncrief BK, Hermann M, Kapley N (2006) Aging and the visual, haptic, and cross-modal perception of natural object shape. Perception 35:1383–1395

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pavani F, Bottari D (2012) Visual abilities in individuals with profound deafness: a critical review. In: Murray MM, Wallace M (eds) Frontiers in the neural bases of multisensory processes. CRC Press, Boca Raton, pp 423–447

    Google Scholar 

  • Proksch J, Bavelier D (2002) Changes in the spatial distribution of visual attention after early deafness. J Cogn Neurosci 14:687–701

    Article  PubMed  Google Scholar 

  • Ragert P, Schmidt A, Altenmüller E, Dinse HR (2004) Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur J Neurosci 19:473–478

    Article  PubMed  Google Scholar 

  • R Developmental Core Team (2013) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Reuter EM, Voelcker-Rehage C, Vieluf S, Godde B (2012) Touch perception throughout working life: effects of age and expertise. Exp Brain Res 216:287–297

    Article  PubMed  Google Scholar 

  • Röder B, Rösler F, Spence C (2004) Early vision impairs tactile perception in the blind. Curr Biol 14:121–124

    Article  PubMed  Google Scholar 

  • Stevens AA, Weaver K (2005) Auditory perceptual consolidation in early-onset blindness. Neuropsychologia 43:1901–1910

  • Stilla R, Hanna R, Hu X, Mariola E, Deshpande G, Sathian K (2008) Neural processing underlying tactile microspatial discrimination in the blind: a functional magnetic resonance imaging study. J Vis 8(13):1–19

    Article  PubMed  Google Scholar 

  • Van Boven RW, Hamilton RH, Kauffman T, Keenan JP, Pascual-Leone A (2000) Tactile spatial resolution in blind Braille readers. Neurology 54:2230–2236

    Article  PubMed  Google Scholar 

  • Van der Lubbe RHJ, Van Mierlo CM, Postma A (2009) The involvement of occipital cortex in the early blind in auditory and tactile duration discrimination tasks. J Cogn Neurosci 22:1541–1556

    Article  Google Scholar 

  • Van Dijk R, Kappers AML, Postma A (2013) Superior spatial touch: improved haptic orientation processing in deaf individuals. Exp Brain Res 230:283–289

    Article  PubMed  Google Scholar 

  • Voisin J, Lamarre Y, Chapman CE (2002) Haptic discrimination of object shapes in humans: contribution of cutaneous and proprioceptive inputs. Exp Brain Res 145:251–260

    Article  PubMed  Google Scholar 

  • Voss P, Lassonde M, Gougoux F, Fortin M, Guillemot JP, Lepore F (2004) Early-and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr Biol 14:1734–1738

    Article  PubMed  CAS  Google Scholar 

  • Wan CY, Wood AG, Reutens DC, Wilson SJ (2010) Congenital blindness leads to enhanced vibrotactile perception. Neuropsychologia 48:631–635

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to La Lega del Filo d’Oro for their help in recruiting and testing deaf-blind participants. They are also grateful to Martina Gerosa for helping in recruiting deaf participants and to Maria Rosaria de Filippis from the Unione Italiana Ciechi di Milano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Papagno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papagno, C., Cecchetto, C., Pisoni, A. et al. Deaf, blind or deaf-blind: Is touch enhanced?. Exp Brain Res 234, 627–636 (2016). https://doi.org/10.1007/s00221-015-4488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4488-1

Keywords

Navigation