Skip to main content
Log in

Analysis of hand kinematics reveals inter-individual differences in intertemporal decision dynamics

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

During intertemporal decisions, the preference for smaller, sooner reward over larger-delayed rewards (temporal discounting, TD) exhibits substantial inter-subject variability; however, it is currently unclear what are the mechanisms underlying this apparently idiosyncratic behavior. To answer this question, here we recorded and analyzed mouse movement kinematics during intertemporal choices in a large sample of participants (N = 86). Results revealed a specific pattern of decision dynamics associated with the selection of “immediate” versus “delayed” response alternatives, which well discriminated between a “discounter” versus a “farsighted” behavior—thus representing a reliable behavioral marker of TD preferences. By fitting the Drift Diffusion Model to the data, we showed that differences between discounter and farsighted subjects could be explained in terms of different model parameterizations, corresponding to the use of different choice mechanisms in the two groups. While farsighted subjects were biased toward the “delayed” option, discounter subjects were not correspondingly biased toward the “immediate” option. Rather, as shown by the dynamics of evidence accumulation over time, their behavior was characterized by high choice uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abboud H, Schultz W, Zeitlin V (2006) SuperLab, stimulus presentation software (Version 4.0)

  • Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82:257–272

    Article  Google Scholar 

  • Barca L, Pezzulo G (2012) Unfolding visual lexical decision in time. PLoS One 7:e35932. doi:10.1371/journal.pone.0035932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barca L, Pezzulo G (2015) Tracking second thoughts: continuous and discrete revision processes during visual lexical decision. PLoS One 10:e0116193. doi:10.1371/journal.pone.0116193

    Article  PubMed Central  PubMed  Google Scholar 

  • Berns GS, Laibson D, Loewenstein G (2007) Intertemporal choice: toward an integrative framework. Trends Cogn Sci 11:482–488. doi:10.1016/j.tics.2007.08.011

    Article  PubMed  Google Scholar 

  • Calluso C, Tosoni A, Pezzulo G et al (2015) Interindividual variability in functional connectivity as long-term correlate of temporal discounting. PLoS One 10:e0119710. doi:10.1371/journal.pone.0119710

    Article  PubMed Central  PubMed  Google Scholar 

  • Chabris CF, Laibson DI, Schuldt JP (2008) Intertemporal choice. In: Durlauf SN, Blume LE (eds) The new palgrave dictionary of economics, 2nd edn. Palgrave Macmillan, Basingstoke

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711

    Article  CAS  PubMed  Google Scholar 

  • Dshemuchadse M, Scherbaum S, Goschke T (2012) How decisions emerge: action dynamics in intertemporal decision making. J Exp Psychol Gen 142:93–100. doi:10.1037/a0028499

    Article  PubMed  Google Scholar 

  • Figner B, Knoch D, Johnson EJ et al (2010) Lateral prefrontal cortex and self-control in intertemporal choice. Nat Neurosci 13:538–539. doi:10.1038/nn.2516

    Article  CAS  PubMed  Google Scholar 

  • Fossati A, Di Ceglie A, Acquarini E, Barratt ES (2001) Psychometric properties of an Italian version of the Barratt Impulsiveness Scale-11 (BIS-11) in nonclinical subjects. J Clin Psychol 57:815–828

    Article  CAS  PubMed  Google Scholar 

  • Freeman JB, Ambady N (2010) MouseTracker: software for studying real-time mental processing using a computer mouse-tracking method. Behav Res Methods 42:226–241. doi:10.3758/BRM.42.1.226

    Article  PubMed  Google Scholar 

  • Freeman JB, Ambady N, Rule NO, Johnson KL (2008) Will a category cue attract you? Motor output reveals dynamic competition across person construal. J Exp Psychol Gen 137:673–690. doi:10.1037/a0013875

    Article  PubMed  Google Scholar 

  • Freeman JB, Ambady N, Midgley KJ, Holcomb PJ (2011a) The real-time link between person perception and action: brain potential evidence for dynamic continuity. Soc Neurosci 6:139–155. doi:10.1080/17470919.2010.490674

    Article  PubMed Central  PubMed  Google Scholar 

  • Freeman JB, Dale R, Farmer TA (2011b) Hand in motion reveals mind in motion. Front Psychol 2:59. doi:10.3389/fpsyg.2011.00059

    Article  PubMed Central  PubMed  Google Scholar 

  • Gianotti LRR, Figner B, Ebstein RP, Knoch D (2012) Why some people discount more than others: baseline activation in the dorsal PFC mediates the link between COMT genotype and impatient choice. Front Neurosci 6:54. doi:10.3389/fnins.2012.00054

    Article  PubMed Central  PubMed  Google Scholar 

  • Green L, Myerson J (1996) Exponential versus hyperbolic discounting of delayed outcomes: risk and waiting time. Am Zool 505:496–505

    Article  Google Scholar 

  • Hamilton M (1960) Rating Scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haxby JV, Parasuramen R, Lalonde F, Abboud H (1993) SuperLab: general-purpose Macintosh software for human experimental psychology and psychological testing. Behav Res Methods 25:400–405

    Article  Google Scholar 

  • Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6:813–827

    Article  Google Scholar 

  • Johnson MW, Bickel WK (2002) Within-subject comparison of real and hypothetical money rewards in delay discounting. J Exp Anal Behav 77:129–146. doi:10.1901/jeab.2002.77-129

    Article  PubMed Central  PubMed  Google Scholar 

  • Kable JW, Glimcher PW (2007) The neural correlates of subjective value during intertemporal choice. Nat Neurosci 10:1625–1633. doi:10.1038/nn2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirby KN, Petry NM, Kirby K (2004) Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99:461–471

    Article  PubMed  Google Scholar 

  • Kobak KA, Reynolds WM, Maruish ME (1999) Hamilton depression inventory. The use of psychological testing for treatment planning and outcomes assessment, 2nd edn. Lawrence Erlbaum Associates Publisherssogs, Mahwah, pp 935–969

    Google Scholar 

  • Lagorio CH, Madden GJ (2005) Delay discounting of real and hypothetical rewards III: steady-state assessments, forced-choice trials, and all real rewards. Behav Processes 69:173–187. doi:10.1016/j.beproc.2005.02.003

    Article  PubMed  Google Scholar 

  • Laibson D (1997) Golden eggs and hyperbolic discounting*. Q J Econ 62:443–477

    Article  Google Scholar 

  • Lepora NF, Pezzulo G (2015) Embodied choice: how action influences perceptual decision making. PLoS Comput Biol 11:e1004110. doi:10.1371/journal.pcbi.1004110

    Article  PubMed Central  PubMed  Google Scholar 

  • Lesieur HR, Blume SB (1987) The South Oaks Gambling Screen (SOGS): a new instrument for the identification of pathological gamblers. Am J Psychiatry 144:1184–1188

    Article  CAS  PubMed  Google Scholar 

  • Madden GJ, Begotka AM, Raiff BR, Kastern LL (2003) Delay discounting of real and hypothetical rewards. Exp Clin Psychopharmacol 11:139–145

    Article  PubMed  Google Scholar 

  • Madden GJ, Raiff BR, Lagorio CH et al (2004) Delay discounting of potentially real and hypothetical rewards: II. between- and within-subject comparisons. Exp Clin Psychopharmacol 12:251–261

    Article  PubMed  Google Scholar 

  • Mazur JE (1987) An adjusting procedure for studying delayed reinforcement. In: Commons M, Mazur J, Nevin J, Rachlin H (eds) The effect of delay and of intervening events of reinforcement value. Quantitative analysis of behavior, Vol 5. Erlbaum, Hillsdale, pp 57–73

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507. doi:10.1126/science.1100907

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SH (1999) Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology 146:455–464

    Article  CAS  PubMed  Google Scholar 

  • Monterosso J, Ainslie G (1999) Beyond discounting possible experimental models of impulse control. Psychopharmacology 146:339–347

    Article  CAS  PubMed  Google Scholar 

  • O’Leary DP (1990) Robust regression computation using iteratively reweighted least squares. SIAM J Matrix Anal Appl 11:466–480

    Article  Google Scholar 

  • Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515–532. doi:10.1152/jn.00587.2002

    Article  PubMed  Google Scholar 

  • Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51(6):768–774

    Article  CAS  PubMed  Google Scholar 

  • Paulus MP, Yu AJ (2012) Emotion and decision-making: affect-driven belief systems in anxiety and depression. Trends Cogn Sci 16:476–483. doi:10.1016/j.tics.2012.07.009

    Article  PubMed Central  PubMed  Google Scholar 

  • Peters J, Büchel C (2011) The neural mechanisms of inter-temporal decision-making: understanding variability. Trends Cogn Sci 15:227–239. doi:10.1016/j.tics.2011.03.002

    Article  PubMed  Google Scholar 

  • Pezzulo G, Rigoli F (2011) The value of foresight: how prospection affects decision-making. Front Neurosci 5:1–15. doi:10.3389/fnins.2011.00079

    Article  Google Scholar 

  • Pezzulo G, Rigoli F, Chersi F (2013) The mixed instrumental controller: using value of Information to combine habitual choice and mental simulation. Front Cogn 4:1–15

    Google Scholar 

  • Philiastides MG, Auksztulewicz R, Heekeren HR, Blankenburg F (2011) Causal role of dorsolateral prefrontal cortex in human perceptual decision making. Curr Biol 21:980–983. doi:10.1016/j.cub.2011.04.034

    Article  CAS  PubMed  Google Scholar 

  • Quinton J, Volpi NC, Barca L, Pezzulo G (2013) The cat is on the mat. Or is it a dog? Dynamic competition in perceptual decision making. IEEE Trans Syst Man Cybern Part A Syst 44:539–551

    Article  Google Scholar 

  • Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 922:873–922

    Article  Google Scholar 

  • Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347–356

    Article  Google Scholar 

  • Reynolds B, Ortengren A, Richards JB, de Wit H (2006) Dimensions of impulsive behavior: personality and behavioral measures. Pers Individ Dif 40:305–315. doi:10.1016/j.paid.2005.03.024

    Article  Google Scholar 

  • Sestieri C, Tosoni A, Mignogna V et al (2014) Memory accumulation mechanisms in human cortex are independent of motor intentions. J Neurosci 34:6993–7006. doi:10.1523/JNEUROSCI.3911-13.2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song J-H, Nakayama K (2009) Hidden cognitive states revealed in choice reaching tasks. Trends Cogn Sci 13:360–366. doi:10.1016/j.tics.2009.04.009

    Article  PubMed  Google Scholar 

  • Spielberger CD, Gorsuch RL, Lushene RE (1970) The State trait anxiety inventory (STAI). Test manual for form X. Consulting Psychologist Press, Palo Alto. Trad. It. S.T.A.I. Questionario di autovalutazione dell’ansia di stato e di tratto a cura di Pedrabissi e Santinello (1989)

  • Spivey MJ (2007) On the continuity of mind. Oxford University Press, USA

    Google Scholar 

  • Sullivan N, Hutcherson C, Harris A, Rangel A (2014) Dietary Self-control is related to the speed with which attributes of healthfulness and tastiness are processed. Psychol Sci 26:122–134. doi:10.1177/0956797614559543

    Article  PubMed  Google Scholar 

  • Summerfield C, Tsetsos K (2012) Building bridges between perceptual and economic decision-making: neural and computational mechanisms. Front Neurosci 6:1–20. doi:10.3389/fnins.2012.00070

    Article  Google Scholar 

  • Van den Bos W, McClure SM (2013) Towards a general model of temporal discounting. J Exp Anal Behav 99:58–73. doi:10.1002/jeab.6

    Article  PubMed  Google Scholar 

  • Vandekerckhove J, Tuerlinckx F (2007) Fitting the Ratcliff diffusion model. Psychon Bull Rev 14:1011–1026

    Article  PubMed  Google Scholar 

  • Vandekerckhove J, Tuerlinckx F (2008) Diffusion model analysis with MATLAB: a DMAT primer. Behav Res Methods 40:61–72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Giulia Piraino for her help during data collection.

Funding

Research funded by the EU’s FP7 under Grant Agreement No FP7-ICT-270108 and the HFSP under Grant Agreement RGY0088/2014 to GP, and University G. d’Annunzio research funds to GC.

Author contribution

C. C., A. T., G. P and G. C. designed research; C. C. performed research; C. C., A. T., and N. L. analyzed data; and C. C., A. T., G. P., N. L. and G. C. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Calluso.

Appendix

Appendix

This Appendix summarizes the methods used in the Embodied Choice model to calculate the action focus; for further details, see Lepora and Pezzulo (2015). Mathematically, we represent the action focus as a point (x (z), y (z)) that is a function of the accumulated information z(t). At each instance of time, the action is a move (Δx, Δy) from the present location toward the action focus

$$(\Delta x(t),\Delta y(t)) = v\Delta t\frac{{(x(z),y(z)_{\text{focus}} - x(t),y(t))}}{{\left| {(x(z),y(z)_{\text{focus}} - x(t),y(t))} \right|}}$$

which for simplicity we assume is at constant speed v taken at discrete time steps of Δt.

In the two-target forced choice task considered here, we consider a preparatory move toward an action focus between the two targets, to approach the most likely target prior to accumulating sufficient information to make a decision. Mathematically, we define the focus as collinear with the two targets with distance from each in the proportion ∣b + z∣: ∣b − z∣ for −b ≤ z ≤ b

$$(x(z),y(z))_{\text{focus}} = \left\{ {\begin{array}{ll} {(x_{1} ,y_{1} ),} &\quad {{z}({t}) \ge {b}} \\ {\frac{{\left| {b - z} \right|}}{2b}(x_{1} ,y_{1} ) + \frac{{\left| {b + z} \right|}}{{{{2}}{b}}}(x_{2} ,y_{2} )} &\quad { - b \le z(t) \le b} \\ {(x_{2} ,y_{2} )} &\quad {{z}({t}) \ge - {b}} \\ \end{array} } \right.$$

This range is bounded such that the focus is coincident with a target if the decision bound is passed. Hence, the decision bound no longer defines decision termination directly, but rather the choice follows indirectly from action completion (upon reaching a target).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calluso, C., Committeri, G., Pezzulo, G. et al. Analysis of hand kinematics reveals inter-individual differences in intertemporal decision dynamics. Exp Brain Res 233, 3597–3611 (2015). https://doi.org/10.1007/s00221-015-4427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4427-1

Keywords

Navigation