Skip to main content
Log in

Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Many situations in our everyday life call for a mechanism deputed to outright stop an ongoing course of action. This behavioral inhibition ability, known as response stopping, is often impaired in psychiatric conditions characterized by impulsivity and poor inhibitory control. Transcranial direct current stimulation (tDCS) has recently been proposed as a tool for modulating response stopping in such clinical populations, and previous studies in healthy humans have already shown that this noninvasive brain stimulation technique is effectively able to improve response stopping, as measured in a stop-signal task (SST) administered immediately after the stimulation. So far, the right inferior frontal gyrus (rIFG) has been the main focus of these attempts to modulate response stopping by the means of noninvasive brain stimulation. However, other cortical areas such as the right dorsolateral prefrontal cortex (rDLPFC) have been implicated in inhibitory control with other paradigms. In order to provide new insight about the involvement of these areas in response stopping, in the present study, tDCS was delivered to 115 healthy subjects, using five stimulation setups that differed in terms of target area (rIFG or rDLPFC) and polarity of stimulation (anodal, cathodal, or sham). The SST was performed 15 min after the offset of the stimulation. Consistently with previous studies, only anodal stimulation over rIFG induced a reliable, although weak, improvement in the SST, which was specific for response stopping, as it was not mirrored in more general reaction time measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MC (2003) Rethinking interference theory: executive control and the mechanisms of forgetting. J Mem Lang 49:415–445

    Article  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27:3743–3752

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Robbins T, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18:177–185

    Article  PubMed  Google Scholar 

  • Banich MT, Depue B (2015) Recent advances in understanding neural systems that support inhibitory control. Curr Opin Behav Sci 1:17–22

    Article  Google Scholar 

  • Batsikadze G, Moliadze V, Paulus W, Kuo M-F, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591:1987–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beeli G, Casutt G, Baumgartner T, Jäncke L (2008) Modulating presence and impulsiveness by external stimulation of the brain. Behav Brain Funct 4:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  • Bermpohl F, Fregni F, Boggio PS, Thut G, Northoff G, Otachi PTM, Rigonatti SP, Marcolin MA, Pascual-Leone A (2006) Effect of low-frequency transcranial magnetic stimulation on an affective go/no-go task in patients with major depression: role of stimulation site and depression severity. Psychiatry Res 141:1–13

    Article  PubMed  Google Scholar 

  • Berryhill ME, Peterson DJ, Jones KT, Stephens JA (2014) Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol 5:800. doi:10.3389/fpsyg.2014.00800

    Article  PubMed Central  PubMed  Google Scholar 

  • Betta E, Galfano G, Turatto M (2007) Microsaccadic response during inhibition of return in a target-target paradigm. Vision Res 47:428–436

    Article  PubMed  Google Scholar 

  • Bikson M, Datta A, Elwassif M (2009) Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol 120:1033–1034

    Article  PubMed Central  PubMed  Google Scholar 

  • Boisseau CL, Thompson-Brenner H, Caldwell-Harris C, Pratt E, Farchione T, Harrison Barlow D (2012) Behavioral and cognitive impulsivity in obsessive–compulsive disorder and eating disorders. Psychiatry Res 200:1062–1066

    Article  PubMed  Google Scholar 

  • Brunoni AR, Shiozawa P, Truong D, Javitt DC, Elkis H, Fregni F, Bikson M (2014) Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis. Expert Rev Med Devices 11:383–394

    Article  CAS  PubMed  Google Scholar 

  • Chambers CD, Bellgrove MA, Stokes MG, Henderson TR, Garavan H, Robertson IH, Morris AP, Mattingley JB (2006) Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci 18:444–455

    PubMed  Google Scholar 

  • Chevrier AD, Noseworthy MD, Schachar R (2007) Dissociation of response inhibition and performance monitoring in the stop signal task using event-related fMRI. Hum Brain Mapp 28:1347–1358

    Article  PubMed  Google Scholar 

  • Chikazoe J, Jimura K, Hirose S, Yamashita K, Miyashita Y, Konishi S (2009) Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J Neurosci 29:15870–15877

    Article  CAS  PubMed  Google Scholar 

  • Cunillera T, Fuentemilla L, Brignani D, Cucurell D, Miniussi C (2014) A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex. PLoS ONE 9:e113537. doi:10.1371/journal.pone.0113537

    Article  PubMed Central  PubMed  Google Scholar 

  • Depue BE, Burgess EG, Willcutt L, Ruzic MT, Banich MT (2010) Inhibitory control of memory retrieval and motor processing associated with the right lateral prefrontal cortex: evidence from deficits in individuals with ADHD. Neuropsychologia 48:3909–3917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ditye T, Jacobson L, Walsh V, Lavidor M (2012) Modulating behavioral inhibition by tDCS combined with cognitive training. Exp Brain Res 219:363–368

    Article  PubMed  Google Scholar 

  • Enticott PG, Ogloff JRP, Bradshaw JL (2008) Response inhibition and impulsivity in schizophrenia. Psychiatry Res 157:251–254

    Article  PubMed  Google Scholar 

  • Falcone B, Coffman B, Clark VP, Parasuraman R (2012) Transcranial direct current stimulation augments sensitivity and 24-hour retention in a complex threat detection task. PLoS ONE 7:e34993. doi:10.1371/journal.pone.0034993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feil J, Zangen A (2010) Brain stimulation in the study and treatment of addiction. Neurosci Biobehav Rev 34:559–574

    Article  PubMed  Google Scholar 

  • Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C (2010) Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res 208:311–318

    Article  PubMed  Google Scholar 

  • Fillmore MT, Rush CR (2002) Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend 66:265–273

    Article  PubMed  Google Scholar 

  • Galfano G, Betta E, Turatto M (2004) Inhibition of return in microsaccades. Exp Brain Res 159:400–404

    Article  PubMed  Google Scholar 

  • Hsu T-Y, Tseng L-Y, Yu J-X, Kuo W-J, Hung DL, Tzeng OJL, Walsh V, Muggleton NG, Juan Juan C-H (2011) Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage 56:2249–2257

    Article  PubMed  Google Scholar 

  • Hughes ME, Budd TW, Fulham WR, Lancaster S, Woods W, Rossell SL, Michie PT (2014) Sustained brain activation supporting stop-signal task performance. Eur J Neurosci 39:1363–1369

    Article  CAS  PubMed  Google Scholar 

  • Jacobson L, Javitt DC, Lavidor M (2011) Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. J Cogn Neurosci 23:3380–3387

    Article  PubMed  Google Scholar 

  • Jacobson L, Ezra A, Berger U, Lavidor M (2012a) Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation. Clin Neurophysiol 123:979–984

    Article  PubMed  Google Scholar 

  • Jacobson L, Koslowsky M, Lavidor M (2012b) tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res 216:1–10

    Article  PubMed  Google Scholar 

  • Jasper H (1958) The ten-twenty system of the International Federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  • Juan C-H, Muggleton NG (2012) Brain stimulation and inhibitory control. Brain Stimul 5:63–69

    Article  PubMed  Google Scholar 

  • Jung Y-J, Kim J-H, Im C-H (2013) COMETS: A MATLAB toolbox for simulating local electric fields generated by transcranial Direct Current Stimulation (tDCS). Biomed Eng Lett 3:39–46

    Article  Google Scholar 

  • Krause B, Cohen Kadosh R (2013) Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Dev Cogn Neurosci 6:176–194

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuhl BA, Dudukovic NM, Kahn I, Wagner A (2007) Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nat Neurosci 10:908–914

    Article  CAS  PubMed  Google Scholar 

  • Li CSR, Huang C, Constable RT, Sinha R (2006) Imaging response inhibition in a stop-signal task: neural correlates of signal monitoring and post-response processing. J Neurosci 26:186–192

    Article  CAS  PubMed  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Article  Google Scholar 

  • Metuki N, Sela T, Lavidor M (2012) Enhancing cognitive control components of insight problem solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimul 5:110–115

    Article  PubMed  Google Scholar 

  • Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W (2003) Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 114:220–222

    Google Scholar 

  • Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97:3109–3117

    Article  CAS  PubMed  Google Scholar 

  • Osman A, Kornblum S, Meyer DE (1986) The point of no return in choice reaction time: controlled and ballistic stages of response preparation. J Exp Psychol Hum Percept Perform 12:243–258

    Article  CAS  PubMed  Google Scholar 

  • Pastore M, Nucci M, Galfano G (2008) Comparing different methods for multiple testing in reaction time data. J Mod App Stat Meth 7:120–139

    Google Scholar 

  • Penolazzi B, Di Domenico A, Marzoli D, Mammarella N, Fairfield B, Franciotti R, Brancucci A, Tommasi L (2010) Effects of transcranial direct current stimulation on episodic memory related to emotional visual stimuli. PLoS ONE 5:e10623. doi:10.1371/journal.pone.0010623

    Article  PubMed Central  PubMed  Google Scholar 

  • Penolazzi B, Pastore M, Mondini S (2013) Electrode montage dependent effects of transcranial direct current stimulation on semantic fluency. Behav Brain Res 248:129–135

    Article  PubMed  Google Scholar 

  • Penolazzi B, Stramaccia DF, Braga M, Mondini S, Galfano G (2014) Human memory retrieval and inhibitory control in the brain: beyond correlational evidence. J Neurosci 34:6606–6610

    Article  CAS  PubMed  Google Scholar 

  • Schall JD, Godlove DC (2012) Current advances and pressing problems in studies of stopping. Curr Opin Neurobiol 22:1012–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen J (2005) Formation of a motor memory by action observation. J Neurosci 25:9339–9346

    Article  CAS  PubMed  Google Scholar 

  • Swick D, Chatham CH (2014) Ten years of inhibition revisited. Front Hum Neurosci 8:329. doi:10.3389/fnhum.2014.00329

    Article  PubMed Central  PubMed  Google Scholar 

  • Swick D, Ashley V, Turken U (2011) Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage 56:1655–1665

    Article  PubMed  Google Scholar 

  • Vannorsdall TD, Schretlen DJ, Andrejczuk M, Ledoux K, Bosley LV, Weaver JR, Skolasky RL, Gordon B (2012) Altering automatic verbal processes with transcranial direct current stimulation. Front Psychiatry 3:73

    Article  PubMed Central  PubMed  Google Scholar 

  • Verbruggen F, Logan GD, Stevens MA (2008) STOP-IT: windows executable software for the stop-signal paradigm. Behav Res Methods 40:479–483

    Article  PubMed  Google Scholar 

  • Wu M, Giel KE, Skunde M, Schag K, Rudofsky G, de Zwaan M, Zipfel S, Herzog W, Friederich HC (2013) Inhibitory control and decision making under risk in bulimia nervosa and binge-eating disorder. Int J Eat Disord 46:721–728

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this research was funded by grants awarded from the University of Padua to G.G., B.P., and S.M.

Conflict of interest

None of the authors have potential conflicts of interest to be disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Galfano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stramaccia, D.F., Penolazzi, B., Sartori, G. et al. Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex. Exp Brain Res 233, 2283–2290 (2015). https://doi.org/10.1007/s00221-015-4297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4297-6

Keywords

Navigation