Skip to main content
Log in

Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Evidence suggests that the cross-transfer of strength following unilateral training may be modulated by increased corticospinal excitability of the ipsilateral primary motor cortex, due to cross-activation. Anodal-tDCS (a-tDCS) has been shown to acutely increase corticospinal excitability and motor performance, which may enhance this process. Therefore, we sought to examine changes in neural activation and strength of the untrained limb following the application of a-tDCS during a single unilateral strength training session. Ten participants underwent three conditions in a randomized, double-blinded crossover design: (1) strength training + a-tDCS, (2) strength training + sham-tDCS and (3) a-tDCS alone. a-tDCS was applied for 20 min at 2 mA over the right motor cortex. Unilateral strength training of the right wrist involved 4 × 6 wrist extensions at 70 % of maximum. Outcome measures included maximal voluntary strength, corticospinal excitability, short-interval intracortical inhibition, and cross-activation. We observed a significant increase in strength of the untrained wrist (5.27 %), a decrease in short-interval intracortical inhibition (−13.49 %), and an increase in cross-activation (15.71 %) when strength training was performed with a-tDCS, but not following strength training with sham-tDCS, or tDCS alone. Corticospinal excitability of the untrained wrist increased significantly following both strength training with a-tDCS (17.29 %), and a-tDCS alone (15.15 %), but not following strength training with sham-tDCS. These findings suggest that a single session of a-tDCS combined with unilateral strength training of the right limb increases maximal strength and cross-activation to the contralateral untrained limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerley SJ, Stinear C, Byblow WD (2011) Promoting use-dependent plasticity with externally-paced training. Clin Neurophys 122:2462–2468

    Article  Google Scholar 

  • Arányi Z, Rösler K (2002) Effort-induced mirror movements. Exp Brain Res 145:76–82

    Article  PubMed  Google Scholar 

  • Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC (2006) Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 101:1514–1522

    Article  PubMed  Google Scholar 

  • Carroll TJ, Lee M, Hsu M, Sayde J (2008) Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. J Appl Physiol 104:1656–1664

    Article  PubMed  Google Scholar 

  • Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Rev 49:641–662

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD (2004) Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol 560:929–940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cernacek J (1961) Contralateral motor irradiation—cerebral dominance. Its changes in hemiparesis. Arch Neurol 4:165–172

    Article  PubMed  CAS  Google Scholar 

  • Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A (2007) Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci 26:242–249

    Article  PubMed  CAS  Google Scholar 

  • Edwards DJ, Krebs HI, Rykman A, Zipse J, Thickbroom GW, Mastaglia FL, Pascual-Leone A, Volpe BT (2009) Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci 27:199–207

    PubMed  CAS  Google Scholar 

  • Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MTA, Barbosa ER, Nitsche MA, Pascual-Leone A (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 21:1693–1702

    Article  PubMed  Google Scholar 

  • Goodwill AM, Pearce AJ, Kidgell DJ (2012) Corticomotor plasticity following unilateral strength training. Muscle Nerve 46:384–393

    Article  PubMed  Google Scholar 

  • Hendy AM, Kidgell DJ (2013) Anodal tDCS applied during strength training enhances motor cortical plasticity. Med Sci Sports Exerc 45:1721–1729

    Article  PubMed  Google Scholar 

  • Hinder M, Schmidt M, Garry M, Carroll TJ, Summers J (2011) Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. J Appl Physiol 110:166–175

    Article  PubMed  Google Scholar 

  • Hinder M, Schmidt M, Garry M, Summers J (2013) The effect of ballistic thumb contractions on the excitability of the ipsilateral motor cortex. Exp Brain Res 227:19–29

    Article  PubMed  Google Scholar 

  • Hopf HC, Schlegel HJ, Lowitzsch K (1974) Irradiation of voluntary activity to the contralateral side in movements of normal subjects and patients with central motor disturbances. Eur Neurol 12:142–147

    Article  PubMed  CAS  Google Scholar 

  • Hortobágyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459

    Article  PubMed  Google Scholar 

  • Hortobágyi T, Richardson SP, Lomarev M, Shamim E, Meunier S, Russman H, Dang N, Hallett M (2011) Interhemispheric plasticity in humans. Med Sci Sports Exerc 43:1188–1199

    Article  PubMed  PubMed Central  Google Scholar 

  • Howatson G, Taylor MB, Rider P, Motawar BR, McNally MP, Solnik S, DeVita P, Hortobágyi T (2011) Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors. Eur J Neurosci 33:978–990

    Article  PubMed  PubMed Central  Google Scholar 

  • Hummel F (2006) Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci 7:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128:490–499

    Article  PubMed  Google Scholar 

  • Keel JC, Smith MJ, Wassermann EM (2001) A safety screening questionnaire for transcranial magnetic stimulation. Clin Neurophysiol 112:720

    Article  PubMed  CAS  Google Scholar 

  • Kidgell D, Pearce A (2010) Neural adaptations following cross-education strength training: a pilot study. J Sci Med Sport 12:500–502

    Article  Google Scholar 

  • Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  • Koeneke S, Lutz K, Herwig U, Ziemann U, Jäncke L (2006) Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Exp Brain Res 174:199–209

    Article  PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee M, Gandevia SC, Carroll TJ (2009) Unilateral strength training increases voluntary activation of the opposite untrained limb. Clin Neurophysiol 120:802–808

    Article  PubMed  Google Scholar 

  • Lee M, Hinder MR, Gandevia SC, Carroll TJ (2010) The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice. J Physiol 588:201–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC stimulation induced after effects of human motor cortex excitability. Brain 125:2238

    Article  PubMed  Google Scholar 

  • Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594

    Article  PubMed  CAS  Google Scholar 

  • Meyer BU, Roricht S, von Einsiedel HG, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440

    Article  PubMed  Google Scholar 

  • Munn J, Herbert RD, Gandevia SC (2004) Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol 96:1861–1866

    Article  PubMed  CAS  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901

    Article  PubMed  CAS  Google Scholar 

  • Nitsche M, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553:293–301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, Fricke K, Liebetanz D, Lang N, Antal A, Paulus W, Tergau F (2005) Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 568:291–303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223

    Article  PubMed  Google Scholar 

  • Perez MA, Cohen LG (2008) Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci 28:5631–5640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166

    PubMed  CAS  Google Scholar 

  • Rantalainen T, Weier A, Leung M, Brandner C, Spittle M, Kidgell D (2013) Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle. Front Hum Neurosci 7:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruddy KL, Carson RG (2013) Neural pathways mediating cross education of motor function. Front Hum Neurosci 7:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Scripture EW, Smith TL, Brown EM (1894) On the education of muscular control and power. Stud Yale Psychol Lab 2:114–119

    Google Scholar 

  • Tanaka S, Hanakawa T, Honda M, Watanabe K (2009) Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196:459–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Takeda K, Otaka Y, Kita K, Osu R, Honda M, Sadato N, Hanakawa T, Watanabe K (2011) Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair 25:565–569

    Article  PubMed  Google Scholar 

  • Van Duinen H, Renken R, Maurits NM, Zijdewind I (2008) Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle. Hum Brain Mapp 29:281–299

    Article  PubMed  Google Scholar 

  • Weier AT, Pearce AJ, Kidgell DJ (2012) Strength training reduces intracortical inhibition. Acta Physiol 206:109–119

    Article  CAS  Google Scholar 

  • Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zijdewind I, Butler JE, Gandevia SC, Taylor JL (2006) The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles. Exp Brain Res 175:526–535

    Article  PubMed  Google Scholar 

  • Zoghi M, Nordstrom M (2007) Progressive suppression of intracortical inhibition during graded isometric contraction of a hand muscle is not influenced by hand preference. Exp Brain Res 177:266–274

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

D.J. Kidgell is supported by an Alfred Deakin Postdoctoral Fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawson J. Kidgell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendy, A.M., Kidgell, D.J. Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Exp Brain Res 232, 3243–3252 (2014). https://doi.org/10.1007/s00221-014-4016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4016-8

Keywords

Navigation