Skip to main content
Log in

Exploring the reciprocal modulation of time and space in dancers and non-dancers

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We explored whether time and space representations modulate each other in subjects that are trained to integrate time and space dimensions, i.e., professional dancers. A group of dancers, and one of non-dancers, underwent two different tasks employing identical stimuli. A first static central line could last one of three possible durations and could have one of three possible lengths. A second growing line appeared from the left or right of the screen and grew up toward the opposite direction at constant velocity. In the Spatial task, subjects encoded the length of the static line and stopped the growing line when it had reached half the length of the static one, regardless of time travel. In the Temporal task, subjects encoded the duration of the static line and stopped the growing line when it had lasted half the duration of the static one, regardless of space traveled. Dancers, differently from non-dancers, anticipated time in the Temporal task. However, both dancers and non-dancers were biased by the stimulus length when performing the Temporal task, while they were not biased by the stimulus duration when performing the Spatial task. Concluding, this study underlines the plasticity of time dimension that can be influenced by spatial information and by sensorimotor training for the synchronization in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aagten-Murphy D, Cappagli G, Burr D (2014) Musical training generalises across modalities and reveals efficient and adaptive mechanisms for reproducing temporal intervals. Acta Psychol (Amst) 147:25–33

    Article  Google Scholar 

  • Abe S (1935) Experimental study of the correlation between time and space. Tohoku Psychol Folia 3:53–68

    Google Scholar 

  • Bläsing B, Calvo-Merino B, Cross ES, Jola C, Honisch J, Stevens CJ (2012) Neurocognitive control in dance perception and performance. Acta Psychol (Amst) 139(2):300–308

  • Bonato M, Zorzi M, Umiltà C (2012) When time is space: evidence for a mental time line. Neurosci Biobehav Rev 36(10):2257–2273

    Article  PubMed  Google Scholar 

  • Brown SW (1995) Time, change, and motion: the effects of stimulus movement on temporal perception. Percept Psychophys 57(1):105–116

  • Bueti D, Walsh V (2009) The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc Lond B Biol Sci 364(1525):1831–1840

    Article  PubMed  PubMed Central  Google Scholar 

  • Bultitude JH, Aimola Davies AM (2006) Putting attention on the line: investigating the activation–orientation hypothesis of pseudoneglect. Neuropsychologia 44(10):1849–1858

    Article  PubMed  Google Scholar 

  • Calvo-Merino B, Ehrenberg S, Leung D, Haggard P (2010) Experts see it all: configural effects in action observation. Psychol Res 74(4):400–406

    Article  PubMed  Google Scholar 

  • Casasanto D, Boroditsky L (2008) Time in the mind: using space to think about time. Cognition 106(2):579–593

    Article  PubMed  Google Scholar 

  • Cohen J, Hansel CE, Sylvester JD (1953) A new phenomenon in time judgment. Nature 172(4385):901

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Hansel CE, Sylvester JD (1954) Interdependence of temporal and auditory judgments. Nature 174(4431):642–644

    Article  PubMed  CAS  Google Scholar 

  • Collyer CE (1977) Discrimination of spatial and temporal intervals defined by three light flashes: effects of spacing on temporal judgments and of timing on spatial judgments. Percept Psychophys 21(4):357–364

    Article  Google Scholar 

  • Conson M, Cinque F, Barbarulo AM, Trojano L (2008) A common processing system for duration, order and spatial information: evidence from a time estimation task. Exp Brain Res 187(2):267–274

    Article  PubMed  Google Scholar 

  • Coull JT, Nazarian B, Vidal F (2008) Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. J Cogn Neurosci 20(12):2185–2197

    Article  PubMed  Google Scholar 

  • Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36(1):3–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Fink A, Graif B, Neubauer AC (2009) Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neuroimage 46(3):854–862

  • Goldreich D (2007) A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS One 2(3):e333

    Article  PubMed  PubMed Central  Google Scholar 

  • Golomer E, Dupui P, Séréni P, Monod H (1999) The contribution of vision in dynamic spontaneous sways of male classical dancers according to student or professional level. J Physiol Paris 93(3):233–237

  • Grassi M, Bonato M (2012) The interaction between time and number in a temporal bisection task: a reply to Vicario (2011). Perception 41(4):498–500

    Article  PubMed  Google Scholar 

  • Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72(3):561–582

    Article  PubMed  Google Scholar 

  • Grondin S, Plourde M (2007) Discrimination of time intervals presented in sequences: spatial effects with multiple auditory sources. Hum Mov Sci 26(5):702–716

    Article  PubMed  Google Scholar 

  • Helson H (1930) The Tau effect—an example of psychological relativity. Science 71(1847):536–537

    Article  PubMed  CAS  Google Scholar 

  • Helson H, King SM (1931) The Tau effect: an example of psychological relativity. J Exp Psychol 14:202–217

    Article  Google Scholar 

  • Henry MJ, McAuley JD (2009) Evaluation of an imputed pitch velocity model of the auditory kappa effect. J Exp Psychol Hum Percept Perform 35(2):551–564

    Article  PubMed  Google Scholar 

  • Huang YL, Jones B (1982) On the interdependence of temporal and spatial judgments. Percept Psychophys 32(1):7–14

    Article  PubMed  CAS  Google Scholar 

  • Hugel F, Cadopi M, Kohler F, Perrin P (1999) Postural control of ballet dancers: a specific use of visual input for artistic purposes. Int J Sports Med 20(2):86–92

  • Ishihara M, Keller PE, Rossetti Y, Prinz W (2008) Horizontal spatial representations of time: evidence for the STEARC effect. Cortex 44(4):454–461

    Article  PubMed  Google Scholar 

  • Ivry RB, Schlerf JE (2008) Dedicated and intrinsic models of time perception. Trends Cogn Sci 12(7):273–280

    Article  PubMed  Google Scholar 

  • Jewell G, McCourt ME (2000) Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38(1):93–110

    Article  PubMed  CAS  Google Scholar 

  • Lee D (2000) Learning of spatial and temporal patterns in sequential hand movements. Brain Res Cogn Brain Res 9(1):35–39

  • Magnani B, Pavani F, Frassinetti F (2012) Changing auditory time with prismatic goggles. Cognition 125(2):233–243

    Article  PubMed  Google Scholar 

  • May J, Calvo-Merino B, deLahunta S, McGregor W, Cusack R, Owen AM, Veldsman M, Ramponi C, Barnard P (2011) Points in mental space: an interdisciplinary study of imagery in movement creation. Dance Res 29(2):404–430

  • Merritt DJ, Casasanto D, Brannon EM (2010) Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition 117(2):191–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Minvielle-Moncla J, Audiffren M, Macar F, Vallet C (2008) Overproduction timing errors in expert dancers. J Mot Behav 40(4):291–300

    Article  PubMed  Google Scholar 

  • Miyatani M (1984–1985) Reply to Dr. Collyer’s comments. Hiroshima Forum Psychol 10:59–60

  • Oliveri M, Koch G, Salerno S, Torriero S, Lo Gerfo E, Caltagirone C (2009) Representation of time intervals in the right posterior parietal cortex: implications for a mental time line. Neuroimage 46(4):1173–1179

    Article  PubMed  Google Scholar 

  • Roussel ME, Grondin S, Killeen P (2009) Spatial effects on temporal categorization. Perception 38(5):748–762

    Article  PubMed  Google Scholar 

  • Santiago J, Lupiáñez J, Pérez E, Funes MJ (2007) Time (also) flies from left to right. Psychon Bull Rev 14(3):512–516

    Article  PubMed  Google Scholar 

  • Sarrazzin JC, Giraudo MD, Pailhous J, Boostma RJ (2004) Dynamics of balancing space and time in memory: tau and kappa effects revisited. J Exp Psychol Hum Percept Perform 30(3):411–430

    Article  Google Scholar 

  • Sgouramani H, Vatakis A (2014) “Flash” dance: how speed modulates perceived duration in dancers and non-dancers. Acta Psychol (Amst) 147:17–24

    Article  Google Scholar 

  • Stevens CJ, Schubert E, Wang S, Kroos C, Halovic S (2011) Moving with and without music: scaling and lapsing in time in the performance of contemporary dance. Music Percept 26(5):451–464

    Article  Google Scholar 

  • Torralbo A, Santiago J, Lupiáñez J (2006) Flexible conceptual projection of time onto spatial frames of reference. Cogn Sci 30(4):745–757

    Article  PubMed  Google Scholar 

  • Vallesi A, Binns MA, Shallice T (2008) An effect of spatial-temporal association of response codes: understanding the cognitive representations of time. Cognition 107(2):501–527

  • Vallesi A, McIntosh AR, Stuss DT (2011) How time modulates spatial responses. Cortex 47(2):148–156

    Article  PubMed  Google Scholar 

  • Vicario CM, Pecoraro P, Turriziani P, Koch G, Caltagirone C, Oliveri M (2008) Relativistic compression and expansion of experiential time in the left and right space. PLoS One 3(3):e1716

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7(11):483–488

    Article  PubMed  Google Scholar 

  • Xuan B, Zhang D, He S, Chen XC (2007) Larger stimuli are judged to last longer. J Vis 7:1–5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

F.F. was supported by a grant from the Fondazione del Monte di Bologna e Ravenna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Magnani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnani, B., Oliveri, M. & Frassinetti, F. Exploring the reciprocal modulation of time and space in dancers and non-dancers. Exp Brain Res 232, 3191–3199 (2014). https://doi.org/10.1007/s00221-014-4005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4005-y

Keywords

Navigation