Skip to main content
Log in

Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The origin of the internal “sensory conflict” stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei that respond preferentially to passive head movements. During active movement, the semicircular canal and otolith input (“reafference”) to these neurons are canceled by a mechanism comparing the expected consequences of self-generated movement (estimated with an internal model—presumably located in the cerebellum) with the actual sensory feedback. The un-canceled component (“exafference”) resulting from passive movement normally helps compensate for unexpected postural disturbances. Notably, the existence of such vestibular “sensory conflict” neurons had been postulated as early as 1982, but their existence and putative role in posture control and motion sickness have been long debated. Here, we review the development of “sensory conflict” theories in relation to recent evidence for brainstem and cerebellar reafference cancelation, and identify some open research questions. We propose that conditions producing persistent activity of these neurons, or their targets, stimulate nearby brainstem emetic centers—via an as yet unidentified mechanism. We discuss how such a mechanism is consistent with the notable difference in motion sickness susceptibility of drivers as opposed to passengers, human immunity to normal self-generated movement and why head restraint or lying horizontal confers relative immunity. Finally, we propose that fuller characterization of these mechanisms and their potential role in motion sickness could lead to more effective, scientifically based prevention and treatment for motion sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24. doi:10.1146/annurev.neuro.30.051606.094225

    Article  CAS  PubMed  Google Scholar 

  • Blakemore SJ, Wolpert DM, Frith CD (1999) The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. Neuroimage 10:448–459

    Article  CAS  PubMed  Google Scholar 

  • Bock OL, Oman CM (1982) Dynamics of subjective discomfort in motion sickness as measured with a magnitude estimation method. Aviat Space Environ Med 53:733–737

    Google Scholar 

  • Borison HL, Borison R (1986) Motion sickness reflexarc bypasses the area postrema in cats. Exp Neurol 92:723–737

    Article  CAS  PubMed  Google Scholar 

  • Bos JE, Bles W (1998) Modeling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47:537–542

    Article  CAS  PubMed  Google Scholar 

  • Brooks JX, Cullen KE (2009) Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J Neurosci 29:10499–10511. doi:10.1523/JNEUROSCI.1937-09.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks JX, Cullen KE (2013) The primate cerebellum selectively encodes unexpected self-motion. Curr Biol 23:947–955. doi:10.1016/j.cub.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  • Brooks JX, Cullen KE (2014) Early vestibular processing does not distinguish active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback. J Neurophysiol. doi:10.1152/jn.00600.2013

  • Carriot J, Brooks JX, Cullen KE (2013) Multimodal integration of self-motion cues in the vestibular system: active versus passive translations. J Neurosci 33:19555–19566. doi:10.1523/JNEUROSCI.3051-13.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claremont CA (1931) The psychology of sea-sickness. Psyche 11:86–90

    Google Scholar 

  • Cullen KE (2012) The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 35:185–196. doi:10.1016/j.tins.2011.12.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cullen KE (2014) The neural encoding of self-generated and externally applied movement: implications for the perception of self-motion and spatial memory. Front Integr Neurosci 7:108. doi:10.3389/fnint.2013.00108

    Article  PubMed Central  PubMed  Google Scholar 

  • Cullen KE, Minor LB (2002) Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for vestibular efference. J Neuroscience 22: RCC226 (221–227)

  • Cullen KE, Brooks JX, Sadeghi SG (2009) How actions alter sensory processing: reafference in the vestibular system. Ann N Y Acad Sci 1164:29–36. doi:10.1111/j.1749-6632.2009.03866.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong X, Yoshida K, Stoffregen TA (2011) Control of a virtual vehicle influences postural activity and motion sickness. J Exp Psychol Appl 17:128–138. doi:10.1037/a0024097

    Article  PubMed  Google Scholar 

  • Gellman R, Gibson AR, Houck JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol 54:40–60

    CAS  PubMed  Google Scholar 

  • Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golding JF, Stott JRR (1997) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. J Vestib Res 7:421–428

    Article  CAS  PubMed  Google Scholar 

  • Guedry FE (1968) Conflicting sensory orientation cues as a factor in motion sickness. In: Graybiel A (ed) Fourth symposium on the role of the vestibular organs in space exploration, vol NASA., SP-187US Government Printing Office, Pensacola, pp 45–51

    Google Scholar 

  • Haslwanter T, Jaeger R, Mayr S, Fetter M (2000) Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp Brain Res 134:96–106

    Article  CAS  PubMed  Google Scholar 

  • Held RM (1961) Exposure history as a factor in maintaining stability of perception and coordination. J Nerv Ment Dis 132:26–32

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162–176

    CAS  PubMed  Google Scholar 

  • Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886:237–245

  • Jamali M, Sadeghi SG, Cullen KE (2009) Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations. J Neurophysiol 101:141–149. doi:10.1152/jn.91066.2008

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson WH, Mayne R (1953) Stimulus required to produce motion sickness: restriction of head movement as a preventive of airsickness—field studies of airborne troops. J Aviat Med 400–411:452

    Google Scholar 

  • Kennedy AR, Hettinger LJ, Lilllienthal MG (1990) Simulator sickness. In: Crampton GH (ed) Motion and space sickness. CRC Press, Boca Raton, pp 317–341

    Google Scholar 

  • Manning GW, Stewart WG (1949) Effect of body position on the incidence of motion sickness. J Appl Physiol 1:619–628

    CAS  PubMed  Google Scholar 

  • McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons. J Neurophysiol 82:416–428

    CAS  PubMed  Google Scholar 

  • Medrea I, Cullen KE (2013) Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. J Neurophysiol 110:2704–2717. doi:10.1152/jn.01037.2012

    Article  PubMed  Google Scholar 

  • Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modelling tilt and translation responses. J Neurophysiol 87:819–833

    CAS  PubMed  Google Scholar 

  • Merfeld DM, Young LR, Oman CM, Shelhamer MJ (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3:141–161

    CAS  PubMed  Google Scholar 

  • Miller AD, Wilson VJ (1983a) Vestibular-induced vomiting after vestibulocerebellar lesions. Brain Behav Evol 23:26–31

    Article  CAS  PubMed  Google Scholar 

  • Miller AD, Wilson VJ (1983b) ‘Vomiting center’ reanalyzed: an electrical stimulation study. Brain Res 270:154–158

    Article  CAS  PubMed  Google Scholar 

  • Money KE (1970) Motion sickness. Physiol Rev 50:1

    CAS  PubMed  Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngologica (Stockholm) 94(S392):4–44

  • Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68:294–303

    Article  CAS  PubMed  Google Scholar 

  • Oman CM (1991) Sensory conflict in motion sickness: an observer theory approach. In: Ellis S (ed) Pictorial communication in real and virtual environments. Taylor and Francis, London, pp 362–367

    Google Scholar 

  • Oman CM (2012) Are evolutionary hypotheses for motion sickness “Just-So” stories ? J Vestib Res 22:117–127

    PubMed  Google Scholar 

  • Owen N, Leadbetter AG, Yardley L (1998) Relationship between postural control and motion sickness in healthy subjects. Brain Res Bull 47:471–474

    Article  CAS  PubMed  Google Scholar 

  • Reason JT (1969) Motion sickness—some theoretical considerations. Int J Man Mach Stud 1:21–38

    Article  Google Scholar 

  • Reason JT (1978) Motion sickness adaptation: a neural mismatch model. J R Soc Med 71:819–829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic Press, London

    Google Scholar 

  • Rolnick A, Lubow RE (1991) Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics 34:867–879. doi:10.1080/00140139108964831

    Article  CAS  PubMed  Google Scholar 

  • Roy EA, Cullen KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neuroscience 21:2131–2142

    CAS  Google Scholar 

  • Roy EA, Cullen KE (2002) Vestibuloocular reflex signal modulation during voluntary and passive head movements. J Neurophysiol 87:2237–2357

    Google Scholar 

  • Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi SG, Minor LB, Cullen KE (2007) Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy. J Neurophysiol 97:1503–1514. doi:10.1152/jn.00829.2006

    Article  PubMed  Google Scholar 

  • Sadeghi SG, Mitchell DE, Cullen KE (2009) Different neural strategies for multimodal integration: comparison of two macaque monkey species. Exp Brain Res 195:45–57. doi:10.1007/s00221-009-1751-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Selva P, Oman CM (2012) Relationships between observer and kalman filter models for human dynamic spatial orientation. J Vestib Res 22:69–80

    PubMed  Google Scholar 

  • Smart LJ, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Hum Factors 44:451–465

    Article  PubMed  Google Scholar 

  • Steele JE (1963) Motion sickness and spatial perception: a theoretical study. In: vol AMRL-TDR-63-25. U.S. Army Aeromedical Research Laboratory, Wright Patterson AFB, Ohio

  • Stoffregen TA, Riccio GE (1991) An ecological critique of the sensory conflict theory of motion sickness. Ecol Psychol 3:159–194

    Article  Google Scholar 

  • Suzuki T, Sugiyama Y, Yates BJ (2012) Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 302:R965–R975. doi:10.1152/ajpregu.00680.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493–496

  • Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369

    CAS  PubMed  Google Scholar 

  • Uno A, Takeda N, Kitahara T, Sakata Y, Yamatodani A, Kubo T (2000) Effects of vestibular cerebellum lesion on motion sickness in rats. Acta Otolaryngol (Stockh.) 120:386–389

    Article  CAS  Google Scholar 

  • Vingerhoets RAA, Van Gisbergen JAM, Medendorp WP (2007) Verticality perception during off-vertical axis rotation. J Neurophysiol 97:3256–3268

    Article  CAS  PubMed  Google Scholar 

  • Von Holst E (1954) Relations between the central nervous system and the peripheral organs. Br J Anim Behav 2:89–94

    Article  Google Scholar 

  • Wang SC, Chinn HI (1956) Experimental motion sickness in dogs: importance of labyrinth and vestibular cerebellum. Am J Physiol 185(3):617–623

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47:395–406

    Article  CAS  PubMed  Google Scholar 

  • Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86:209–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Oman was supported in part by the National Space Biomedical Research Institute through NASA NCC 9-58. Dr. Cullen’s research was supported by the Canadian Institutes of Health Research (CIHR), the National Institutes of Health (DC002390), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQNRT), and US National Institute of Health Grant R01 DC2390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Oman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oman, C.M., Cullen, K.E. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Exp Brain Res 232, 2483–2492 (2014). https://doi.org/10.1007/s00221-014-3973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3973-2

Keywords

Navigation