Skip to main content

Advertisement

Log in

Understanding balance differences in individuals with multiple sclerosis with mild disability: an investigation of differences in sensory feedback on postural control during a Romberg task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A major presenting symptom in ‘individuals with multiple sclerosis with mild balance disability’ (IwMS) is poor postural control, resulting from slowed spinal somatosensory conduction. Postural control deficits in IwMS are most apparent when vision is removed and the base of support is reduced such is the case during tandem and single support stances. The current study used center of pressure (COP) measurements to determine whether postural control differences exist between IwMS and either ‘healthy age-matched individuals’ (HAMI) or ‘community-dwelling older adults’ (OA). Postural control was evaluated using a Romberg standing task, which required participants to stand with their feet together and hands by their sides for 45 s with either their eyes open or closed. Results revealed that COP velocity root mean square was greater in IwMS and their COP position was closer to their self-selected maximum stability limits (e.g., greater Standing Index proportion) when vision was removed compared to HAMI. Conversely, IwMS displayed similar postural control characteristics to OA. The current study highlights two novel findings: (1) the utility of novel COP measurements to assess differences in the level of postural control in IwMS; and (2) the benefit of assessing postural control levels in IwMS to not only a population with a fully intact and functional postural control system (HAMI) but also to another population that is thought to experience postural control deficits (OA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adkin AL, Frank JS, Carpenter MG, Peysar GW (2000) Postural control is scaled to level of postural threat. Gait Posture 12:87–93

    Article  CAS  PubMed  Google Scholar 

  • Adkin AL, Frank JS, Carpenter MG, Peysar GW (2002) Fear of falling modifies anticipatory postural control. Exp Brain Res 143:160–170. doi:10.1007/s00221-001-0974-8

    Article  PubMed  Google Scholar 

  • Bloem BR, Allum JH, Carpenter MG, Verschuuren JJ, Honegger F (2002) Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Exp Brain Res 142:91–107. doi:10.1007/s00221-001-0926-3

    Article  CAS  PubMed  Google Scholar 

  • Brown LA, Sleik RJ, Polych MA, Gage WH (2002) Is the prioritization of postural control altered in conditions of postural threat in younger and older adults? J Gerontol A Biol Sci Med Sci 57:M785–M792

    Article  PubMed  Google Scholar 

  • Cameron M, Lord S (2010) Postural control in multiple sclerosis: implications for fall prevention. Curr Neurol Neurosci Rep 10:407–412

    Google Scholar 

  • Cameron MH, Horak FB, Herndon RR, Bourdette D (2008) Imbalance in multiple sclerosis: a result of slowed spinal somatosensory conduction. Somatosens Mot Res 25:113–122. doi:10.1080/08990220802131127

    Article  PubMed Central  PubMed  Google Scholar 

  • Carpenter MG, Frank JS, Silcher CP (1999) Surface height effects on postural control: a hypothesis for a stiffness strategy for stance. J Vestib Res 9:277–286

    CAS  PubMed  Google Scholar 

  • Corporaal SH, Gensicke H, Kuhle J, Kappos L, Allum JH, Yaldizli O (2013) Balance control in multiple sclerosis: correlations of trunk sway during stance and gait tests with disease severity. Gait Posture 37:55–60. doi:10.1016/j.gaitpost.2012.05.025

    Article  PubMed  Google Scholar 

  • Corradini ML, Fioretti S, Leo T, Piperno R (1997) Early recognition of postural disorders in multiple sclerosis through movement analysis: a modeling study. IEEE Trans Biomed Eng 44:1029–1038. doi:10.1109/10.641330

    Article  CAS  PubMed  Google Scholar 

  • Daley ML, Swank RL (1981) Quantitative posturography: use in multiple sclerosis. IEEE Trans Biomed Eng 28:668–671. doi:10.1109/tbme.1981.324761

    CAS  PubMed  Google Scholar 

  • Diener HC, Dichgans J (1988) On the role of vestibular, visual and somatosensory information for dynamic postural control in humans. Prog Brain Res 76:253–262

    Article  CAS  PubMed  Google Scholar 

  • Downtown J (1996) Falls in the elderly: a clinical view. Oxford University Press, New York

    Google Scholar 

  • Fanchamps MH, Gensicke H, Kuhle J, Kappos L, Allum JH, Yaldizli O (2012) Screening for balance disorders in mildly affected multiple sclerosis patients. J Neurol 259:1413–1419. doi:10.1007/s00415-011-6366-5

    Article  PubMed  Google Scholar 

  • Findling O, Sellner J, Meier N, Allum JH, Vibert D, Lienert C, Mattle HP (2011) Trunk sway in mildly disabled multiple sclerosis patients with and without balance impairment. Exp Brain Res 213:363–370. doi:10.1007/s00221-011-2795-8

    Article  PubMed  Google Scholar 

  • Frzovic D, Morris ME, Vowels L (2000) Clinical tests of standing balance: performance of persons with multiple sclerosis. Arch Phys Med Rehabil 81:215–221

    Article  CAS  PubMed  Google Scholar 

  • Jackson RT, Epstein CM, De l’Aune WR (1995) Abnormalities in posturography and estimations of visual vertical and horizontal in multiple sclerosis. Am J Otol 16:88–93

    CAS  PubMed  Google Scholar 

  • Karst GM, Venema DM, Roehrs TG, Tyler AE (2005) Center of pressure measures during standing tasks in minimally impaired persons with multiple sclerosis. J Neurol Phys Ther 29:170–180

    Article  PubMed  Google Scholar 

  • Khasnis A, Gokula RM (2003) Romberg’s test. J Postgrad Med 49:169–172

    CAS  PubMed  Google Scholar 

  • Kraft AM, Wessman HC (1974) Pathology and etiology in multiple sclerosis: a review. Phys Ther 54:716–720

    CAS  PubMed  Google Scholar 

  • Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Lin SI, Woollacott MH (2002) Postural muscle responses following changing balance threats in young, stable older, and unstable older adults. J Mot Behav 34:37–44. doi:10.1080/00222890209601929

    Article  PubMed  Google Scholar 

  • Masani K, Popovic MR, Nakazawa K, Kouzaki M, Nozaki D (2003) Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J Neurophysiol 90:3774–3782. doi:10.1152/jn.00730.2002

    Article  PubMed  Google Scholar 

  • Multiple Sclerosis Society of Canada (2011) About MS. In: MS Society of Canada. http://mssociety.ca/en/information/default.htm. Retrieved 12 April 2012

  • Nelson SR, Di Fabio RP, Anderson JH (1995) Vestibular and sensory interaction deficits assessed by dynamic platform posturography in patients with multiple sclerosis. Ann Otol Rhinol Laryngol 104:62–68

    CAS  PubMed  Google Scholar 

  • Patla A (1997) Understanding the roles of vision in the control of human locomotion. Gait Posture 5:54–69

    Article  Google Scholar 

  • Pugliatti M, Rosati G, Carton H, Riise T, Drulovic J, Vecsei L, Milanov I (2006) The epidemiology of multiple sclerosis in Europe. Eur J Neurol 13:700–722. doi:10.1111/j.1468-1331.2006.01342.x

    Article  CAS  PubMed  Google Scholar 

  • Sosnoff JJ, Sandroff BM, Motl RW (2012) Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 36:154–156. doi:10.1016/j.gaitpost.2011.11.027

    Article  PubMed  Google Scholar 

  • Spain RI, St George RJ, Salarian A, Mancini M, Wagner JM, Horak FB, Bourdette D (2012) Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 35:573–578. doi:10.1016/j.gaitpost.2011.11.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter D (1995) Human balance and posture during standing and walking. Gait Posture 3:193–214

    Article  Google Scholar 

  • Winter DA, Patla AE, Frank JS (1990) Assessment of balance control in humans. Med Prog Technol 16:31–51

    CAS  PubMed  Google Scholar 

  • Woollacott MH, Shumway-Cook A, Nashner LM (1986) Aging and posture control: changes in sensory organization and muscular coordination. Int J Aging Hum Dev 23:97–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Cinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denommé, L.T., Mandalfino, P. & Cinelli, M.E. Understanding balance differences in individuals with multiple sclerosis with mild disability: an investigation of differences in sensory feedback on postural control during a Romberg task. Exp Brain Res 232, 1833–1842 (2014). https://doi.org/10.1007/s00221-014-3875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3875-3

Keywords

Navigation