Skip to main content
Log in

Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the human upper extremity (UE), unintended effects of proximal muscle activation on muscles controlling the hand could be an important aspect of motor control due to the necessary coordination of distal and proximal segments during functional activities. This study aimed to elucidate the effects of concurrent activation of elbow muscles on the coordination between hand muscles performing a grip task. Eleven healthy subjects performed precision grip tasks while a constant extension or flexion moment was applied to their elbow joints, inducing a sustained submaximal contraction of elbow muscles to counter the applied torque. Activation of four hand muscles was measured during each task condition using surface electromyography (EMG). When concurrent activation of elbow muscles was induced, significant changes in the activation levels of the hand muscles were observed, with greater effects on the extrinsic finger extensor (23.2 % increase under 30 % elbow extensor activation; p = 0.003) than extrinsic finger flexor (14.2 % increase under 30 % elbow flexor activation; p = 0.130). Elbow muscle activation also induced involuntary changes in the intrinsic thumb flexor activation (44.6 % increase under 30 % elbow extensor activation; p = 0.005). EMG–EMG coherence analyses revealed that elbow muscle activation significantly reduced intermuscular coherence between distal muscle pairs, with its greatest effects on coherence in the β-band (13–25 Hz) (average of 17 % decrease under 30 % elbow flexor activation). The results of this study provide evidence for involuntary, muscle-specific interactions between distal and proximal UE muscles, which may contribute to UE motor performance in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ada L, Vattansilp W, O’Dwyer N, Crosbie J (1998) Does spasticity contribute to walking dysfunction after stroke? J Neurol Neurosurg Psychiatry 64:628–635

    Article  CAS  PubMed  Google Scholar 

  • An KN, Hui FC, Morrey RL, Linschied RL, Chao EY (1981) Muscles cross the elbow joint: a biomechanical analysis. J Biomech 14:659–669

    Article  CAS  PubMed  Google Scholar 

  • An KN, Ueba Y, Chao EY, Cooney WP, Linschied RL (1983) Tendon excursion and moment arm of index finger muscles. J Biomech 16:419–425

    Article  CAS  PubMed  Google Scholar 

  • Baker SN (2011) The primate reticulospinal tract, hand function and functional recovery. J Physiol 589:5603–5612

    CAS  PubMed  Google Scholar 

  • Baker SN, Kilner JM, Pinches EM, Lemon RN (1999) The role of synchrony and oscillations in the motor output. Exp Brain Res 128:109–117

    Article  CAS  PubMed  Google Scholar 

  • Bodwell JA, Mahurin RK, Waddle S, Price R, Cramer SC (2003) Age and features of movement influence motor overflow. J Am Geriatr Soc 51:1735–1739

    Article  PubMed  Google Scholar 

  • Brown P (2000) Cortical drives to human muscle: the Piper and related rhythms. Prog Neurobiol 60:97–108

    Article  CAS  PubMed  Google Scholar 

  • Brunnstrom S (1966) Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther 46:357–375

    CAS  PubMed  Google Scholar 

  • Buchanan TS, Rovai GP, Rymer WZ (1989) Strategies for muscle activation during isometric torque generation at the human elbow. J Neurophysiol 62:1201–1212

    CAS  PubMed  Google Scholar 

  • Burne JA, Carleton VL, O’Dwyer NJ (2005) The spasticity paradox: movement disorder or disorder of resting limbs? J Neurol Neurosurg Psychiatry 76:47–54

    Article  CAS  PubMed  Google Scholar 

  • Cholewicki J, Simons APD, Radebold A (2000) Effects of external trunk loads on lumbar spine stability. J Biomech 33:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Christou EA, Rudroff T, Enoka JA, Meyer F, Enoka RM (2007) Discharge rate during low-force isometric contractions influences motor unit coherence below 15 Hz but not motor unit synchronization. Exp Brain Res 178:285–295

    Article  PubMed  Google Scholar 

  • Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118:495–510

    Article  PubMed  Google Scholar 

  • Dimitrijevic MR, Mckay WB, Sarjanovic I, Sherwood AM, Svirtlih L, Vrbova G (1992) Co-activation of ipsi- and contralateral muscle groups during contraction of ankle dorsiflexors. J Neurol Sci 109:49–55

    Article  CAS  PubMed  Google Scholar 

  • Donoghue JP, Leibovic S, Sanes JN (1992) Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Exp Brain Res 89(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Kawahara K (2011) Gender differences in hand stability of normal young people assessed at low force levels. Ergonomics 54:273–281

    Article  PubMed  Google Scholar 

  • Farmer SF, Brenner FD, Halliday DM, Rosenberg JR, Stephans JA (1993) The frequency content of common synaptic inputs to motoneurons studies during isometric voluntary contraction in man. J Physiol 470:127–155

    CAS  PubMed  Google Scholar 

  • Farmer SF, Sheean GL, Mayston MJ, Rothwell JC, Marsden CD, Conway BA, Halliday DM, Rosenberg JR, Stephens JA (1998) Abnormal motor unit synchronization of antagonist muscles underlies pathological co-contraction in upper limb dystonia. Brain 121:801–814

    Article  PubMed  Google Scholar 

  • Farmer SF, Gibbs J, Halliday DM, Harrison LM, James LM, Mayston MJ, Stephens JA (2007) Changes in EMG coherence between long and short thumb abductor muscles during human development. J Physiol 579:389–402

    Article  CAS  PubMed  Google Scholar 

  • Fisher RJ, Galea MP, Brown P, Lemon RN (2002) Digital nerve anaesthesia decreases EMG–EMG coherence in a human precision grip task. Exp Brain Res 145:207–214

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143

    Article  CAS  PubMed  Google Scholar 

  • Franklin DW, Liaw G, Milner TE, Osu R, Burdet E, Kawato M (2007) Endpoint stiffness of the arm is directionally tuned to instability in the environment. J Neurosci 27:7705–7716

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Macefield VG, Bigland-Ritchie B, Gorman RB, Burke D (1993) Motoneuronal output and gradation of effort in attempts to contract acutely paralysed leg muscles in man. J Physiol (Lond) 471:411–427

    CAS  Google Scholar 

  • Gibbs J, Harrison LM, Stephens JA (1997) Cross-correlation analysis of motor unit activity recorded from separate thumb muscles in man. J Physiol 499:255–266

    CAS  PubMed  Google Scholar 

  • Gowland C, Stratford P, Ward M et al (1993) Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke 24:58–63

    Article  CAS  PubMed  Google Scholar 

  • Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89:2396–2405

    Article  PubMed  Google Scholar 

  • Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P (2003) Abnormal corticomuscular and intermuscular coupling in high-frequency rhythmic myoclonus. Brain 126:326–342

    Article  CAS  PubMed  Google Scholar 

  • Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SFA (1995) Framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    Article  CAS  PubMed  Google Scholar 

  • Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241:5–8

    Article  CAS  PubMed  Google Scholar 

  • Hart CB, Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24(22):5269–5282

    Article  CAS  PubMed  Google Scholar 

  • Herter TM, Kurtzer I, Cabel DW, Haunts KA, Scott SH (2007) Characterization of torque-related activity in primary motor cortex during a multijoint postural task. J Neurophysiol 97(4):2887–2799

    Article  PubMed  Google Scholar 

  • Hoffmann G, Kamper DG, Kahn JH, Rymer WZ, Schmit BD (2009) Modulation of stretch reflexes of the finger flexors by sensory feedback from the proximal upper limb poststroke. J Neurophysiol 102:1420–1429

    Article  PubMed  Google Scholar 

  • Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146(2):233–243

    Article  CAS  PubMed  Google Scholar 

  • Kamper DG, Fischer HC, Cruz EG (2006) Impact of finger posture on mapping from muscle activation to joint torque. Clin Biomech 21:361–369

    Article  Google Scholar 

  • Kilner JM, Baker SN, Salenius S, Jousmäki V, Hari R, Lemon RN (1999) Task-dependent modulation of 15–30 Hz coherence between rectified EMGs from human hand and forearm muscles. J Physiol 516:559–570

    Article  CAS  PubMed  Google Scholar 

  • Kilner JM, Baker SN, Salenius S, Hari R, Lemon RN (2000) Human cortical muscle coherence is directly related to specific motor parameters. J Neurosci 20:8838–8845

    CAS  PubMed  Google Scholar 

  • Kisiel-Sajewicz K, Fang Y, Hrovat K, Yue GH, Siemionow V, Sun CK et al (2011) Weakening of synergist muscle coupling during reaching movement in stroke patients. Neurorehabil Neural Repair 25:259–268

    Article  Google Scholar 

  • Kurtzer I, Pruszynski JA, Herter TM, Scott SH (2006) Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task. J Neurophysiol 95(1):493–504

    Article  PubMed  Google Scholar 

  • Lemon RN, Johansson RS, Westling G (1995) Corticospinal control during reach, grasp, and precision lift in man. J Neurosci 15:6145–6156

    CAS  PubMed  Google Scholar 

  • Levin MF, Selles RW, Verheul MH, Meijer OG (2000) Deficits in the coordination of agonist and antagonist muscles in stroke patients: implications for normal motor control. Brain Res 853:352–369

    Article  CAS  PubMed  Google Scholar 

  • Lowery MM, Lyers LJ, Erim Z (2007) Coherence between motor unit discharges in response to shared neural inputs. J Neurosci Methods 163:384–391

    Article  PubMed  Google Scholar 

  • Manning CD, Bawa P (2011) Heteronymous reflex connections in human upper limb muscles in response to stretch of forearm muscles. J Neurophysiol 106:1489–1499

    Article  PubMed  Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1981) Human postural responses. Brain 104:513–534

    Article  CAS  PubMed  Google Scholar 

  • McCrea PH, Eng JJ, Hodgson AJ (2005) Saturated muscle activation contributes to compensatory reaching strategies after stroke. J Neurophysiol 94:2999–3008

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller LC, Dewald JP (2012) Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol 123:1216–1225

    Article  PubMed Central  PubMed  Google Scholar 

  • Milner TE (2002) Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp Brain Res 143:406–416

    Article  PubMed  Google Scholar 

  • Nashner LM, Shumway-Cook A, Marin O (1983) Stance posture control in select groups of children with cerebral palsy: deficits in sensory organization and muscular coordination. Exp Brain Res 49:395–409

    Article  Google Scholar 

  • Nishimura Y, Morichika Y, Isa T (2009) A subcortical oscillatory network contributes to recovery of hand dexterity after spinal cord injury. Brain 132:709–721

    Article  PubMed  Google Scholar 

  • Norton JA, Gorassini MA (2006) Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury. J Neurophysiol 95:2580–2589

    Article  PubMed  Google Scholar 

  • Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1990) The coupling of arm and finger movements during prehension. Exp Brain Res 79:431–435

    Article  CAS  PubMed  Google Scholar 

  • Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurons following visuo-motor skill learning in humans. J Physiol 573:843–855

    Article  CAS  PubMed  Google Scholar 

  • Poston B, Danna-Dos Santos A, Jesunathadas M, Hamm TM, Santello M (2010) Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping. J Neurophysiol 104:1141–1154

    Article  PubMed  Google Scholar 

  • Qui D, Fischer HC, Kamper DG (2009) Muscle activation patterns during force generation of the index finger. In: Engineering in medicine and biology society. Annual international conference of the IEEE, pp 3987–3990

  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC, Traub MM, Marsden CD (1980) Influence of voluntary intent on the human long-latency stretch reflex. Nature 286:496–498

    Article  CAS  PubMed  Google Scholar 

  • Salenius S, Portin K, Kajola M, Salmelin R, Hari R (1997) Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol 77:3401–3405

    CAS  PubMed  Google Scholar 

  • Sangani SG, Starsky AJ, McGuire JR, Schmit BD (2007) Multijoint reflexes of the stroke arm: neural coupling of the elbow and shoulder. Muscle Nerve 36:694–703

    Article  PubMed  Google Scholar 

  • Sheean G, McGuire JR (2009) Spastic hypertonia and movement disorders: pathophysiology, clinical presentation, and quantification. PM R 1:827–833

    Article  PubMed  Google Scholar 

  • Standring S (2009) Gray’s Anatomy, 40th edn. Elsevier/Churchill Livingston, Edinburgh

    Google Scholar 

  • Sukai TM, Ellis MD, Dewald JPA (2007) Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res 183:215–223

    Article  Google Scholar 

  • Takei T, Seki K (2010) Spinal interneurons facilitate coactivation of hand muscles during a precision grip task in monkeys. J Neurosci 30:17041–17050

    Article  CAS  PubMed  Google Scholar 

  • Thelen DD, Riewald SA, Asakawa DS, Sanger TD, Delp SL (2003) Abnormal coupling of knee and hip moments during maximal exertions in persons with cerebral palsy. Muscle Nerve 27:486–493

    Article  PubMed  Google Scholar 

  • Tresch MC, Saltiel P, Bizzi E (1999) The construction of movement by the spinal cord. Nat Neurosci 2(2):162–167

    Article  CAS  PubMed  Google Scholar 

  • Trumbower RD, Ravichandran VJ, Krutky MA, Perreault EJ (2010) Contributions of altered stretch reflex coordination to arm impairments following stroke. J Neurophysiol 104:3612–3624

    Article  PubMed  Google Scholar 

  • Valero-Cuevas FJ, Zajac FE, Burgar CG (1998) Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech 31:693–703

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux L, Quaine F, Labarre-Vila A, Moutet F (2006) Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques. J Biomech 39:2583–2592

    Article  PubMed  Google Scholar 

  • Winter DA, Fuglevand AJ, Archer SE (1994) Crosstalk in surface electromyography: theoretical and practical estimates. J Electromyogr Kinesiol 4:15–26

    Article  CAS  PubMed  Google Scholar 

  • Zackowski KM, Dromerick AW, Sahrmann SA, Thach WT, Bastian AJ (2004) How do strength, sensation, spasticity and joint individuation relate to the reaching deficits of people with chronic hemiparesis? Brain 127:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Zajac FE (1993) Muscle coordination of movement: a perspective. J Biomech 26(S1):109–124

    Article  PubMed  Google Scholar 

  • Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85:1907–1913

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. Bregman for her invaluable input to the study. This work was partially supported by a USAMRMC Grants W81XWH-11-1-0632 (SWL) and NICHD K01HD-60886 (MHL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Harris-Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.W., Landers, K. & Harris-Love, M.L. Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction. Exp Brain Res 232, 739–752 (2014). https://doi.org/10.1007/s00221-013-3784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3784-x

Keywords

Navigation