Skip to main content

Advertisement

Log in

Imagined actions in multiple sclerosis patients: evidence of decline in motor cognitive prediction

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motor imagery is a mental process during which subjects internally simulate a movement without any motor output. Mental and actual movement durations are similar in healthy adults (isochrony) while temporal discrepancies (anisochrony) could be an expression of neurological deficits on action representation. It is unclear whether patients with multiple sclerosis (PwMS) preserve the capacity to simulate their own movements. This study investigates the ability of PwMS to predict their own actions by comparing temporal features of dominant and non-dominant actual and mental actions. Fourteen PwMS and nineteen healthy subjects (HS) were asked to execute and to imagine pointing arm movements among four pairs of targets of different sizes. Task duration was calculated for both actual and mental movements by an optoelectronic device. Results showed temporal consistency and target-by-target size modulation in actual movements through the four cycles for both groups with significantly longer actual and mental movement durations in PwMS with respect to HS. An index of performance (IP) was used to examine actual/mental isochrony properties in the two groups. Statistical analysis on IP showed in PwMS significantly longer actual movement durations with respect to mental movement durations (anisochrony), more relevant for the non-dominant than dominant arm. Mental prediction of motor actions is not well preserved in MS where motor and cognitive functional changes are present. Differences in performing imagined task with dominant and non-dominant arm could be related to increased cognitive effort required for performing non-dominant movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arrondo G, Alegre M, Sepulcre J, Iriarte J, Artieda J, Villoslada P (2009) Abnormalities in brain synchronization are correlated with cognitive impairment in multiple sclerosis. Mult Scler 15(4):509–516

    Article  PubMed  CAS  Google Scholar 

  • Avanzino L, Giannini A, Tacchino A, Pelosin E, Ruggeri P, Bove M (2009) Motor imagery influences the execution of repetitive finger opposition movements. Neurosci Lett 466(1):11–15

    Article  PubMed  CAS  Google Scholar 

  • Baeck JS, Kim YT, Seo JH, Ryeom HK, Lee J, Choi SM, Woo M, Kim W, Kim JG, Chang Y (2012) Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behav Brain Res 234(1):26–32

    Article  PubMed  Google Scholar 

  • Bakker M, de Lange FP, Stevens JA, Toni I, Bloem BR (2007) Motor imagery of gait: a quantitative approach. Exp Brain Res 179(3):497–504

    Article  PubMed  CAS  Google Scholar 

  • Benedict RH, Carone DA, Bakshi R (2004a) Correlating brain atrophy with cognitive dysfunction, mood disturbances, and personality disorder in multiple sclerosis. J Neuroimaging 14(3 Suppl):36S–45S

    Article  PubMed  Google Scholar 

  • Benedict RH, Weinstock-Guttman B, Fishman I, Sharma J, Tjoa CW, Bakshi R (2004b) Prediction of neuropsychological impairment in multiple sclerosis: comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch Neurol 61(2):226–230

    Article  PubMed  Google Scholar 

  • Benedict RH, Holtzer R, Motl RW, Foley FW, Kaur S, Hojnacki D, Weinstock-Guttman B (2011) Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. J Int Neuropsychol Soc 17(4):643–653

    Article  PubMed  Google Scholar 

  • Bergendal G, Fredrikson S, Almkvist O (2007) Selective decline in information processing in subgroups of multiple sclerosis: an 8-year longitudinal study. Eur Neurol 57(4):193–202

    Article  PubMed  CAS  Google Scholar 

  • Bodling AM, Denney DR, Lynch SG (2009) Cognitive aging in patients with multiple sclerosis: a cross-sectional analysis of speeded processing. Arch Clin Neuropsychol 24(8):761–767

    Article  PubMed  Google Scholar 

  • Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67(2):206–207

    PubMed  CAS  Google Scholar 

  • Bonzano L, Tacchino A, Roccatagliata L, Abbruzzese G, Mancardi GL, Bove M (2008) Callosal contributions to simultaneous bimanual finger movements. J Neurosci 28(12):3227–3233

    Article  PubMed  CAS  Google Scholar 

  • Bonzano L, Tacchino A, Roccatagliata L, Mancardi GL, Abbruzzese G, Bove M (2011) Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task. Hum Brain Mapp 32(2):218–228

    Article  PubMed  Google Scholar 

  • Caeyenberghs K, Tsoupas J, Wilson PH, Smits-Engelsman BC (2009) Motor imagery development in primary school children. Dev Neuropsychol 34(1):103–121

    Article  PubMed  Google Scholar 

  • Casadio M, Sanguineti V, Morasso P, Solaro C (2008) Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Mult Scler 14(3):330–342

    Article  PubMed  Google Scholar 

  • Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. The Lancet Neurology 7(12):1139–1151

    Article  Google Scholar 

  • Cho HY, Kim JS, Lee GC (2012) Effects of motor imagery training on balance and gait abilities in post-stroke patients: a randomized controlled trial. Clin Rehabil [Epub ahead of print]

  • Choudhury S, Charman T, Bird V, Blakemore SJ (2007) Development of action representation during adolescence. Neuropsychologia 45(2):255–262

    Article  PubMed  Google Scholar 

  • Colorado RA, Shukla K, Zhou Y, Wolinsky JS, Narayana PA (2012) Multi-task functional MRI in multiple sclerosis patients without clinical disability. Neuroimage 59(1):573–581

    Article  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517

    Article  PubMed  CAS  Google Scholar 

  • Courtine G, Papaxanthis C, Gentili R, Pozzo T (2004) Gait-dependent motor memory facilitation in covert movement execution. Brain Res Cogn Brain Res 22(1):67–75

    Article  PubMed  Google Scholar 

  • Danckert J, Ferber S, Doherty T, Steinmetz H, Nicolle D, Goodale MA (2002) Selective, non-lateralized impairment of motor imagery following right parietal damage. Neurocase 8(3):194–204

    Article  PubMed  Google Scholar 

  • Decety J (1996) Do imagined and executed actions share the same neural substrate? Brain Res Cogn Brain Res 3(2):87–93

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Jeannerod M (1995) Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res 72(1–2):127–134

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Jeannerod M, Prablanc C (1989) The timing of mentally represented actions. Behav Brain Res 34(1–2):35–42

    Article  PubMed  CAS  Google Scholar 

  • DeLuca J, Chelune GJ, Tulsky DS, Lengenfelder J, Chiaravalloti ND (2004) Is speed of processing or working memory the primary information processing deficit in multiple sclerosis? J Clin Exp Neuropsychol 26(4):550–562

    Article  PubMed  Google Scholar 

  • Demougeot L, Papaxanthis C (2011) Muscle fatigue affects mental simulation of action. J Neurosci 31(29):10712–10720

    Article  PubMed  CAS  Google Scholar 

  • Denney DR, Lynch SG, Parmenter BA, Horne N (2004) Cognitive impairment in relapsing and primary progressive multiple sclerosis: mostly a matter of speed. J Int Neuropsychol Soc 10(7):948–956

    Article  PubMed  Google Scholar 

  • Dominey P, Decety J, Broussolle E, Chazot G, Jeannerod M (1995) Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia 33(6):727–741

    Article  PubMed  CAS  Google Scholar 

  • Fadiga L, Craighero L (2004) Electrophysiology of action representation. J Clin Neurophysiol 21(3):157–169

    Article  PubMed  Google Scholar 

  • Fischer JS, Rudick RA, Cutter GR, Reingold SC (1999) The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult Scler 5(4):244–250

    PubMed  CAS  Google Scholar 

  • Flachenecker P, Kumpfel T, Kallmann B, Gottschalk M, Grauer O, Rieckmann P, Trenkwalder C, Toyka KV (2002) Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult Scler 8(6):523–526

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  • Frak V, Paulignan Y, Jeannerod M (2001) Orientation of the opposition axis in mentally simulated grasping. Exp Brain Res 136(1):120–127

    Article  PubMed  CAS  Google Scholar 

  • Gentili R, Cahouet V, Ballay Y, Papaxanthis C (2004) Inertial properties of the arm are accurately predicted during motor imagery. Behav Brain Res 155(2):231–239

    Article  PubMed  Google Scholar 

  • Gentili R, Papaxanthis C, Pozzo T (2006) Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience 137(3):761–772

    Article  PubMed  CAS  Google Scholar 

  • Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104(2):774–783

    Article  PubMed  Google Scholar 

  • Gueugneau N, Mauvieux B, Papaxanthis C (2009) Circadian modulation of mentally simulated motor actions: implications for the potential use of motor imagery in rehabilitation. Neurorehabil Neural Repair 23(3):237–245

    PubMed  Google Scholar 

  • Helmich RC, de Lange FP, Bloem BR, Toni I (2007) Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia 45(10):2201–2215

    Article  PubMed  Google Scholar 

  • Heremans E, Feys P, Nieuwboer A, Vercruysse S, Vandenberghe W, Sharma N, Helsen W (2011) Motor imagery ability in patients with early- and mid-stage Parkinson disease. Neurorehabil Neural Repair 25(2):168–177

    Article  PubMed  Google Scholar 

  • Heremans E, D’Hooge A M, De Bondt S, Helsen W, Feys P (2012) The relation between cognitive and motor dysfunction and motor imagery ability in patients with multiple sclerosis. Mult Scler 18(3):1303–1309

    Google Scholar 

  • Hong IK, Choi JB, Lee JH (2012) Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke. Stroke J Cereb Circ 43(9):2506–2509

    Article  Google Scholar 

  • Human Experimentation: Code of Ethics of the World Medical Association (Declaration of Helsinki) (1964) Can Med Assoc J 91(11):619

    Google Scholar 

  • Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J (2003) Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage 20(2):1171–1180

    Article  PubMed  Google Scholar 

  • Janculjak D, Mubrin Z, Brinar V, Spilich G (2002) Changes of attention and memory in a group of patients with multiple sclerosis. Clin Neurol Neurosurg 104(3):221–227

    Article  PubMed  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14(1 Pt 2):S103–S109

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M, Decety J (1995) Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol 5(6):727–732

    Article  PubMed  CAS  Google Scholar 

  • Johnson SH (2000) Imagining the impossible: intact motor representations in hemiplegics. NeuroReport 11(4):729–732

    Article  PubMed  CAS  Google Scholar 

  • Johnson SH, Sprehn G, Saykin AJ (2002) Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations. J Cogn Neurosci 14(6):841–852

    Article  PubMed  Google Scholar 

  • Kagerer FA, Bracha V, Wunderlich DA, Stelmach GE, Bloedel JR (1998) Ataxia reflected in the simulated movements of patients with cerebellar lesions. Exp Brain Res 121(2):125–134

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Reddy H, Johansen-Berg H, Pendlebury S, Jenkinson M, Smith S, Palace J, Matthews PM (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47(5):606–613

    Article  PubMed  CAS  Google Scholar 

  • Mainero C, Caramia F, Pozzilli C, Pisani A, Pestalozza I, Borriello G, Bozzao L, Pantano P (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage 21(3):858–867

    Article  PubMed  Google Scholar 

  • Maruff P, Wilson PH, De Fazio J, Cerritelli B, Hedt A, Currie J (1999) Asymmetries between dominant and non-dominant hands in real and imagined motor task performance. Neuropsychologia 37(3):379–384

    Article  PubMed  CAS  Google Scholar 

  • McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  PubMed  CAS  Google Scholar 

  • Page SJ, Levine P, Leonard A (2007) Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke J Cereb Circ 38(4):1293–1297

    Article  Google Scholar 

  • Papaxanthis C, Pozzo T, Skoura X, Schieppati M (2002) Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task. Behav Brain Res 134(1–2):209–215

    Article  PubMed  Google Scholar 

  • Papaxanthis C, Pozzo T, Kasprinski R, Berthoz A (2003) Comparison of actual and imagined execution of whole-body movements after a long exposure to microgravity. Neurosci Lett 339(1):41–44

    Article  PubMed  CAS  Google Scholar 

  • Papaxanthis C, Paizis C, White O, Pozzo T, Stucchi N (2012) The relation between geometry and time in mental actions. PLoS ONE 7(11):e51191

    Article  PubMed  CAS  Google Scholar 

  • Penner IK, Rausch M, Kappos L, Opwis K, Radu EW (2003) Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol 250(4):461–472

    Article  PubMed  Google Scholar 

  • Personnier P, Paizis C, Ballay Y, Papaxanthis C (2008) Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements. Behav Brain Res 186(2):273–283

    Article  PubMed  Google Scholar 

  • Personnier P, Ballay Y, Papaxanthis C (2010a) Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements. Behav Brain Res 206(2):184–191

    Article  PubMed  Google Scholar 

  • Personnier P, Kubicki A, Laroche D, Papaxanthis C (2010b) Temporal features of imagined locomotion in normal aging. Neurosci Lett 476(3):146–149

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan VK, Siemionow V, Liu JZ, Sahgal V, Yue GH (2004) From mental power to muscle power–gaining strength by using the mind. Neuropsychologia 42(7):944–956

    Article  PubMed  Google Scholar 

  • Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM, Arnold DL (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320

    Article  PubMed  Google Scholar 

  • Reicker LI, Tombaugh TN, Walker L, Freedman MS (2007) Reaction time: an alternative method for assessing the effects of multiple sclerosis on information processing speed. Arch Clin Neuropsychol 22(5):655–664

    Article  PubMed  Google Scholar 

  • Rizzo MA, Hadjimichael OC, Preiningerova J, Vollmer TL (2004) Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult Scler 10(5):589–595

    Article  PubMed  CAS  Google Scholar 

  • Rocca MA, Pagani E, Ghezzi A, Falini A, Zaffaroni M, Colombo B, Scotti G, Comi G, Filippi M (2003) Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage 19(3):826–836

    Article  PubMed  Google Scholar 

  • Sharma N, Pomeroy VM, Baron JC (2006) Motor imagery: a backdoor to the motor system after stroke? Stroke J Cereb Circ 37(7):1941–1952

    Article  Google Scholar 

  • Simmons L, Sharma N, Baron JC, Pomeroy VM (2008) Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects. Neurorehabil Neural Repair 22(5):458–467

    Article  PubMed  Google Scholar 

  • Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273(5281):1564–1568

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Cohen L, Zalla T, Pradat-Diehl P, Van Eeckhout P, Grafman J, Agid Y (1998) Distinct frontal regions for processing sentence syntax and story grammar. Cortex J Devot Study Nerv Syst Behav 34(5):771–778

    Article  CAS  Google Scholar 

  • Skoura X, Papaxanthis C, Vinter A, Pozzo T (2005) Mentally represented motor actions in normal aging. I. Age effects on the temporal features of overt and covert execution of actions. Behav Brain Res 165(2):229–239

    Article  PubMed  Google Scholar 

  • Skoura X, Personnier P, Vinter A, Pozzo T, Papaxanthis C (2008) Decline in motor prediction in elderly subjects: right versus left arm differences in mentally simulated motor actions. Cortex J Devot Study Nerv Syst Behav 44(9):1271–1278

    Article  Google Scholar 

  • Skoura X, Vinter A, Papaxanthis C (2009) Mentally simulated motor actions in children. Dev Neuropsychol 34(3):356–367

    Article  PubMed  Google Scholar 

  • Solaro C, Brichetto G, Casadio M, Roccatagliata L, Ruggiu P, Mancardi GL, Morasso PG, Tanganelli P, Sanguineti V (2007) Subtle upper limb impairment in asymptomatic multiple sclerosis subjects. Mult Scler 13(3):428–432

    Article  PubMed  CAS  Google Scholar 

  • Staffen W, Mair A, Zauner H, Unterrainer J, Niederhofer H, Kutzelnigg A, Ritter S, Golaszewski S, Iglseder B, Ladurner G (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125(Pt 6):1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Steens A, de Vries A, Hemmen J, Heersema T, Heerings M, Maurits N, Zijdewind I (2012a) Fatigue perceived by multiple sclerosis patients is associated with muscle fatigue. Neurorehabil Neural Repair 26(1):48–57

    Article  PubMed  Google Scholar 

  • Steens A, Heersema DJ, Maurits NM, Renken RJ, Zijdewind I (2012b) Mechanisms underlying muscle fatigue differ between multiple sclerosis patients and controls: a combined electrophysiological and neuroimaging study. Neuroimage 59(4):3110–3118

    Article  PubMed  CAS  Google Scholar 

  • Stinear CM, Byblow WD, Steyvers M, Levin O, Swinnen SP (2006) Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res 168(1–2):157–164

    Article  PubMed  Google Scholar 

  • Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA (2004) Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging 14(2):150–157

    PubMed  Google Scholar 

  • Tamir R, Dickstein R, Huberman M (2007) Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil Neural Repair 21(1):68–75

    Article  PubMed  Google Scholar 

  • Wishart HA, Saykin AJ, McDonald BC, Mamourian AC, Flashman LA, Schuschu KR, Ryan KA, Fadul CE, Kasper LH (2004) Brain activation patterns associated with working memory in relapsing-remitting MS. Neurology 62(2):234–238

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11(18):R729–R732

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Flanagan JR (2001) Perspectives and problems in motor learning. Trends Cogn Sci 5(11):487–494

    Article  PubMed  Google Scholar 

  • Zhang H, Xu L, Wang S, Xie B, Guo J, Long Z, Yao L (2011) Behavioral improvements and brain functional alterations by motor imagery training. Brain Res 1407:38–46

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Brichetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tacchino, A., Bove, M., Pedullà, L. et al. Imagined actions in multiple sclerosis patients: evidence of decline in motor cognitive prediction. Exp Brain Res 229, 561–570 (2013). https://doi.org/10.1007/s00221-013-3617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3617-y

Keywords

Navigation