Skip to main content
Log in

Hyperinsulinemia in rats causes impairment of spatial memory and learning with defects in hippocampal synaptic plasticity by involvement of postsynaptic mechanisms

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 12 May 2013

Abstract

In addition to its peripheral metabolic functions, insulin acts as a central neuromodulator and affects synaptic plasticity of the hippocampal neurons. In this study, hyperinsulinemic obese zucker rats (OZR) with autosomal recessive mutation of the fa-gene were tested in water maze for learning and memory. The animals were then decapitated and hippocampal slices were prepared for electrophysiological examination. In the water maze test, the OZR performed less efficient than their counter lean control rats (LCR). The OZR showed prolonged latency and increased distance swam to reach a hidden platform. In the electrophysiological experiments, the hippocampal slices were examined for paired-pulse facilitation (PPF), long-term potentiation (LTP), and depression expression. The results showed that while the PPF (thus mainly the presynaptic mechanisms) was not affected, the LTP expression (169.9 ± 16.6 vs. 310.7 ± 2.4 %) and the synaptic plasticity range (69.2 vs. 211.2 %) were both reduced in the OZR animals compared to the LCR. It is concluded that hyperinsulinemia in the OZR resulted in defects in hippocampal synaptic plasticity associated with deterioration in spatial learning and memory functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S (2011) Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 68(1):51–57

    Article  PubMed  Google Scholar 

  • Bélanger A, Lavoie N, Trudeau F, Massicotte G, Gagnon S (2004) Preserved LTP and water maze learning in hyperglycaemic-hyperinsulinemic ZDF rats. Physiol Behav 83(3):483–494

    Article  PubMed  Google Scholar 

  • Biessels GJ, Kappelle LJ (2005) Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 33(Pt 5):1041–1044

    PubMed  CAS  Google Scholar 

  • Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45(9):1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800(1):125–135

    Article  PubMed  CAS  Google Scholar 

  • Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM (2005) Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 26(5):645–654

    Article  PubMed  CAS  Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed  Google Scholar 

  • de Oliveira J, Hort MA, Moreira EL, Glaser V, Ribeiro-do-Valle RM, Prediger RD, Farina M, Latini A, de Bem AF (2011) Positive correlation between elevated plasma cholesterol levels and cognitive impairments in LDL receptor knockout mice: relevance of cortico-cerebral mitochondrial dysfunction and oxidative stress. Neuroscience 197:99–106

    Article  PubMed  Google Scholar 

  • Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc Natl Acad Sci USA 89(10):4363–4367

    Article  PubMed  CAS  Google Scholar 

  • Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Türk A, Hoyer S, Zöchling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105(4–5):423–438

    Article  PubMed  Google Scholar 

  • Gerges NZ, Aleisa AM, Alkadhi KA (2003) Impaired long-term potentiation in obese zucker rats: possible involvement of presynaptic mechanism. Neuroscience 120(2):535–539

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Jin Y, Kumar-Mendu S, Degerman E, Groop L, Birnir B (2011) Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current. PloS One 6(1):e16188

    Google Scholar 

  • Kamal A, Biessels GJ, Gispen WH, Urban IJ (1998) Increasing age reduces expression of long-term depression and dynamic range of transmission plasticity in CA1 field of the rat hippocampus. Neuroscience 83(3):707–715

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Biessels GJ, Duis SE, Gispen WH (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43(4):500–506

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Biessels GJ, Gispen WH, Ramakers GM (2006) Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats. Brain Res 1073–1074:276–280

    Article  PubMed  Google Scholar 

  • Kamal A, van der Harst JE, Kapteijn CM, Baars AJ, Spruijt BM, Ramakers GM (2010) Announced reward counteracts the effects of chronic social stress on anticipatory behavior and hippocampal synaptic plasticity in rats. Exp Brain Res 201(4):641–651

    Article  PubMed  Google Scholar 

  • Kamal A, Al Shaibani T, Ramakers G (2011) Erythropoietin decreases the excitatory neurotransmitter release probability and enhances synaptic plasticity in mice hippocampal slices. Brain Res 1410:33–37

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Ramakers GM, Gispen WH, Biessels GJ (2012) Effect of chronic intracerebroventricular insulin administration in rats on the peripheral glucose metabolism and synaptic plasticity of CA1 hippocampal neurons. Brain Res 1435:99–104

    Article  PubMed  CAS  Google Scholar 

  • Kleschevnikov AM, Belichenko PV, Faizi M, Jacobs LF, Htun K, Shamloo M, Mobley WC (2012) Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists. J Neurosci 32(27):9217–9227

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T (2002) Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 113(3):607–615

    Article  PubMed  CAS  Google Scholar 

  • Man HY, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, Wang YT (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25(3):649–662

    Article  PubMed  CAS  Google Scholar 

  • Moult PR, Cross A, Santos SD, Carvalho AL, Lindsay Y, Connolly CN, Irving AJ, Leslie NR, Harvey J (2010) Leptin regulates AMPA receptor trafficking via PTEN inhibition. J Neurosci 30(11):4088–4101

    Article  PubMed  CAS  Google Scholar 

  • Salazar-Weber NL, Smith JP (2011) Copper Inhibits NMDA receptor-independent LTP and modulates the paired-pulse ratio after LTP in mouse hippocampal slices. Int J Alzheimers Dis 2011:1–10

    Article  Google Scholar 

  • Schulz PE (1997) Long-term potentiation involves increases in the probability of neurotransmitter release. Proc Natl Acad Sci USA 94(11):5888–8593

    Article  PubMed  CAS  Google Scholar 

  • Scullin CS, Tafoya LC, Wilson MC, Partridge LD (2012) Presynaptic residual calcium and synaptic facilitation at hippocampal synapses of mice with altered expression of SNAP-25. Brain Res 1431:1–12

    Article  PubMed  CAS  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    PubMed  CAS  Google Scholar 

  • Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18(11):1085–1088

    Article  PubMed  Google Scholar 

  • Ullrich C, Pirchl M, Humpel C (2010) Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Mol Cell Neurosci 45(4):408–417

    Article  PubMed  CAS  Google Scholar 

  • van der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GM (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 94(4):1158–1166

    Article  PubMed  Google Scholar 

  • Wasling P, Hanse E, Gustafsson B (2004) Developmental changes in release properties of the CA3-CA1 glutamate synapse in rat hippocampus. J Neurophysiol 92(5):2714–2724

    Article  PubMed  CAS  Google Scholar 

  • Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, McEwen BS (2005) Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 119(5):1389–1395

    Article  PubMed  CAS  Google Scholar 

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177(1–2):125–134

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274(49):34893–34902

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Al Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamal, A., Ramakers, G.M.J., Gispen, W.H. et al. Hyperinsulinemia in rats causes impairment of spatial memory and learning with defects in hippocampal synaptic plasticity by involvement of postsynaptic mechanisms. Exp Brain Res 226, 45–51 (2013). https://doi.org/10.1007/s00221-013-3409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3409-4

Keywords

Navigation