Skip to main content
Log in

Perceptuo-motor learning rate declines by half from 20s to 70/80s

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study examined perception–action learning in younger adults in their 20s compared to older adults in their 70s and 80s. The goal was to provide, for the first time, quantitative estimates of perceptuo-motor learning rates for each age group and to reveal how these learning rates change between these age groups. We used a visual coordination task in which participants are asked to learn to produce a novel-coordinated rhythmic movement. The task has been studied extensively in young adults, and the characteristics of the task are well understood. All groups showed improvement, although learning rates for those in their 70s and 80s were half the rate for those in their 20s. We consider the potential causes of these differences in learning rates by examining performance across the different coordination patterns examined as well as recent results that reveal age-related deficits in motion perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson GJ (2012) Aging and vision: changes in function and performance from optics to perception. WIREs Cogn Sci 3(3):403–410

    Article  Google Scholar 

  • Ball K, Sekuler R (1986) Improving visual perception in older observers. J Gerontol 41(2):176–182

    Article  PubMed  CAS  Google Scholar 

  • Betts LR, Taylor CP, Sekuler AB, Bennett PJ (2005) Aging reduces center-surround antagonism in visual motion processing. Neuron 45:361–366

    Article  PubMed  CAS  Google Scholar 

  • Billino J, Bremmer F, Genefurtner KR (2008) Differential aging of motion processing mechanisms: evidence against general perceptual decline. Vis Res 48:1254–1261

    Article  PubMed  Google Scholar 

  • Bingham GP (2001) A perceptually driven dynamical model of rhythmic limb movement and bimanual coordination. In: 23rd annual conference of the cognitive science society. LEA Publishers, Hillsdale, pp 75–79

  • Bingham GP (2004a) A perceptually driven dynamical model of bimanual rhythmic movement (and phase perception). Ecol Psychol 16(1):45–53

    Article  Google Scholar 

  • Bingham GP (2004b) Another timing variable composed of state variables: phase perception and phase driven oscillators. In: Hecht H, Savelsbergh G (eds) Theories of time-to-contact. MIT Press, Boston

    Google Scholar 

  • Bingham GP, Schmidt RC, Zaal F (1999) Visual perception of the relative phasing of human limb movements. Percept Psychophys 61(2):246–258

    Article  PubMed  CAS  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  PubMed  CAS  Google Scholar 

  • Buckingham T, Whitaker D, Banford D (1987) Movement in decline? Oscillatory movement displacement thresholds increase with ageing. Ophthalmic Physiol Opt 7:411–413

    Article  PubMed  CAS  Google Scholar 

  • Donovan JJ, Radosevich DJ (1999) A meta-analytic review of the distribution of practice effect: now you see it, now you don’t. J Appl Psychol 84(5):795–805

    Article  Google Scholar 

  • Ghisletta P, Kennedy KM, Rodrigue KM, Lindenberger U, Raz N (2010) Adult age differences and the role of cognitive resources in perceptual-motor skill acquisition: application of a multilevel negative exponential model. J Gerontol B Psychol Sci Soc Sci 65B(2):163–173

    Article  PubMed  Google Scholar 

  • Gilmore GC, Wenk HE, Naylor LA, Stuve TA (1992) Motion perception and aging. Psychol Aging 7(4):654–660

    Article  PubMed  CAS  Google Scholar 

  • Habak C, Faubery J (2000) Larger effect of aging on the perception of higher-order stimuli. Vis Res 40:943–950

    Article  PubMed  CAS  Google Scholar 

  • Haken H, Kelso JA, Bunz H (1985) A theoretical model of phase transition in human hand movements. Biol Cybern 51:347–356

    Article  PubMed  CAS  Google Scholar 

  • Kay BA, Kelso JAS, Saltzman ES, Schoner G (1987) The space-time behavior of single and bimanual rhythmical movements. J Exp Psychol Hum Percept Perform 13:564–583

    Google Scholar 

  • Kelso JAS (1981) On the oscillatory basis of movement. Bull Psychon Soc 18:63

    Google Scholar 

  • Kelso JAS (1984) Phase-transitions and critical-behavior in human bimanual coordination. Am J Physiol 246:1000–1004

    Google Scholar 

  • Kleiner M, Brainard D, Pelli D (2007) What’s new in Psychtoolbox-3? Perception 36, ECVP Abstract Supplement

  • Kovacs AJ, Buchanan JJ, Shea CH (2009a) Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy! Exp Brain Res 193(1):129–136

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2009b) Using scanning trials to assess intrinsic coordination dynamics. Neurosci Lett 455(3):162–167

    Article  PubMed  CAS  Google Scholar 

  • Leech JA, Wilson AD (submitted) Coordinated rhythmic movement is a perception-action task: the consequences of visual feedback and muscle homology on learning and performance

  • Liang Z, Yang Y, Li G, Zhang J, Wang Y, Zhou Y et al (2010) Aging affects the direction selectivity of MT cells in rhesus monkeys. Neurobiol Aging 31(5):863–873

    Article  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Nedelko V, Hassaa T, Hamzeib F et al (2010) Age-independent activation in areas of the mirror neuron system during action observation and action imagery. A fMRI study. Restor Neurol Neurosi 28:737–747

    Google Scholar 

  • Norman JF, Dawson TE, Butler AK (2000) The effects of age upon the perception of depth and 3-D shape from differential motion and binocular disparity. Perception 29:1335–1359

    Article  PubMed  CAS  Google Scholar 

  • Norman JF, Ross HE, Hawkes LM, Long JR (2003) Aging and the perception of speed. Perception 32:85–96

    Article  PubMed  Google Scholar 

  • Panzer S, Gruetzmacher N, Fries U, Krueger M, Shea CH (2011) Age-related effects in interlimb practice on coding complex movement sequences. Hum Mov Sci 30(2):459–474

    Article  PubMed  Google Scholar 

  • Pedhazur EJ (1982) Multiple regression in behavioral research: explanation and prediction. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychopysics: transforming numbers into movies. Spat Vis 10:437–442

    Google Scholar 

  • Pfeiffer E (1975) A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc 23(10):433–441

    Google Scholar 

  • Schmidt RC, Carello C, Turvey MT (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform 16:227–247

    Article  PubMed  CAS  Google Scholar 

  • Serrien DJ, Swinnen SP, Stelmach GE (2000) Age-related deterioration of coordinated interlimb behaviour. J Gerontol 55B(5):295–303

    Google Scholar 

  • Snapp-Childs W, Wilson AD, Bingham GP (2011) The stability of rhythmic movement coordination depends on relative speed: the Bingham model supported. Exp Brain Res 215:89–100

    Article  PubMed  Google Scholar 

  • Snowden RJ, Kavanagh E (2006) Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. Perception 35:9–24

    Article  PubMed  Google Scholar 

  • Swinnen SP, Verschueren SMP, Bogaerts H, Dounskaia N (1998) Age-related deficits in motor learning and differences in feedback processing during the production of a bimanual coordination pattern. Cogn Neuropsychol 15(5):439–466

    Article  Google Scholar 

  • Temprado JJ, Swinnen SP, Carson RG, Tourment A, Laurent M (2003) Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Hum Mov Sci 22:339–363

    Article  PubMed  CAS  Google Scholar 

  • Trick GL, Silverman SE (1991) Visual sensitivity to motion—age-related changes and deficits in senile dementia of the Alzheimer type. Neurology 41:1437–1440

    Article  PubMed  CAS  Google Scholar 

  • Voelcker-Rehage C (2008) Motor-skill learning in older adults—a review of studies on age-related differences. Eur Rev Aging Phys Activ 5:5–16

    Article  Google Scholar 

  • Wilson AD, Bingham GP (2008) Identifying the information for the visual perception of relative phase. Percept Psychophys 70:465–476

    Article  PubMed  Google Scholar 

  • Wilson AD, Bingham GP, Craig JC (2003) Proprioceptive perception of phase variability. J Exp Psychol Hum Percept Perform 29(6):1179–1190

    Article  PubMed  Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005a) Perceptual coupling in rhythmic movement coordination—stable perception leads to stable action. Exp Brain Res 164:517–528

    Article  PubMed  Google Scholar 

  • Wilson AD, Collins DR, Bingham GP (2005b) Human movement coordination implicates relative direction as the information for relative phase. Exp Brain Res 165:351–361

    Article  PubMed  Google Scholar 

  • Wilson AD, Snapp-Childs W, Bingham GP (2010a) Perceptual learning immediately yields new stable motor coordination. Exp Brain Res 36(6):1508–1514

    Google Scholar 

  • Wilson AD, Snapp-Childs W, Coats RO, Bingham GP (2010b) Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Exp Brain Res 205(4):513–520

    Article  PubMed  Google Scholar 

  • Wimmers RH, Beek PJ, Wieringen PCW (1992) Phase transitions in rhythmic tracking movements: a case of unilateral coupling. Hum Mov Sci 11(1–2):217–226

    Article  Google Scholar 

  • Wishart LR, Lee TD, Cunningham SJ, Murdoch JE (2002) Age-related differences and the role of augmented visual feedback in learning a bimanual coordination pattern. Acta Psychol 110:247–263

    Article  Google Scholar 

  • Yamanishi J, Kawato M, Suzuki R (1980) Two coupled oscillators as a model for the coordinated finger tapping by both hands. Biol Cybern 37:219–225

    Article  PubMed  CAS  Google Scholar 

  • Zaal F, Bingham GP, Schmidt RC (2000) Visual perception of relative phase and phase variability. J Exp Psychol Hum Percept Perform 26(3):1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Zanone PG, Kelso JAS (1992) Evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform 18(2):403–421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel O. Coats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coats, R.O., Snapp-Childs, W., Wilson, A.D. et al. Perceptuo-motor learning rate declines by half from 20s to 70/80s. Exp Brain Res 225, 75–84 (2013). https://doi.org/10.1007/s00221-012-3349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3349-4

Keywords

Navigation