Skip to main content
Log in

Mental images across the adult lifespan: a behavioural and fMRI investigation of motor execution and motor imagery

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motor imagery (M.I.) is a mental state in which real movements are evoked without overt actions. There is some behavioural evidence that M.I. declines with ageing. The neurofunctional correlates of these changes have been investigated only in two studies, but none of the these studies has measured explicit correlations between behavioural variables and the brain response, nor the correlation of M.I. and motor execution (M.E.) of the same acts in ageing. In this paper, we report a behavioural and functional magnetic resonance imaging (fMRI) experiment that aimed to address this issue. Twenty-four young subjects (27 ± 5.6 years) and twenty-four elderly subjects (60 ± 4.6 years) performed two block-design fMRI tasks requiring actual movement (M.E.) or the mental rehearsal (M.I.) of finger movements. Participants also underwent a behavioural mental chronometry test in which the temporal correlations between M.I. and M.E. were measured. We found significant neurofunctional and behavioural differences between the elderly subjects and the young subjects during the M.E. and the M.I. tasks: for the M.E. task, the elderly subjects showed increased activation in frontal and prefrontal (pre-SMA) cortices as if M.E. had become more cognitively demanding; during the M.I. task, the elderly over-recruited occipito-temporo-parietal areas, suggesting that they may also use a visual imagery strategy. We also found between-group behavioural differences in the mental chronometry task: M.I. and M.E. were highly correlated in the young participants but not in the elderly participants. The temporal discrepancy between M.I. and M.E. in the elderly subjects correlated with the brain regions that showed increased activation in the occipital lobe in the fMRI. The same index was correlated with the premotor regions in the younger subjects. These observations show that healthy elderly individuals have decreased or qualitatively different M.I. compared to younger subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. M.I. tasks can be explicit or implicit: in a typical implicit M.I. task, subjects are asked to judge whether a tool is oriented conveniently for being grasped with the right or with the left hand; it is assumed that a mental motor simulation process is used to solve the task. Another example of an implicit M.I. task is the hand laterality judgement task: subjects are asked to judge whether a picture depicts a left rather than a right hand; once debriefed, subjects typically report to have imagined their own hand at the orientation of the visual stimulus. On the other hand, in actual motor tasks, like the one adopted here, subjects are invited to mentally rehearse motor acts as if they were performing them but avoiding overt motor production.

  2. For the finger opposition task, there were minor differences between the fMRI and the task performed outside the scanner (during the behavioural task we varied the number of repetitions of the finger tapping (from 2 to 5 cycle). These were needed in order to collect meaningful behavioural data outside the scanner while keeping the subjects sufficiently involved in the task.

  3. When determining the ideal task for the experiments inside and outside the MRI scanner, a number of factors were taken into account, including compatibility with the fMRI environment and the magnitude of the cortical representation within the motor and premotor cortex for the body segment under investigation. We chose the finger opposition tasks because these tasks have been widely used in functional neuroimaging experiments (see for a review: Witt et al. 2008) and in M.I. investigations using both behavioural (see for example Sirigu et al. 1996) and neurofunctional techniques (see for example Guillot et al. 2009). Based on the same considerations, we decided not to use some interesting motor behaviours, such as pointing (Skoura et al. 2008), lifting one arm (Personnier et al. 2008), or walking (Skoura et al. 2005), despite the potential contribution these tasks could make to the investigation of M.I. in behavioural experiments.

  4. The group by task interaction effects are called “larger activations” or “additional activations,” depending on whether the reference group had rather than not some activations in the given area.

  5. A common objection to the concept of M.I. and its motoric nature as demonstrated by functional neuroimaging is that experimenters may occasionally miss small muscle contractions or even quasi-movements that their volunteers make during tasks. Similar to Jeannerod and Decety (1995), we conceptualise M.I. as a form of cognitive motor rehearsal deprived from an explicit motor outflow. For us, the occasional presence of a green light to spinal motor neurons that manifests itself with occasional motor twitches does not detract from the quality of the mental process under investigation. In addition, the exploration of the neurofunctional activations recorded during M.I. and the direct comparison with the neural activity of the executed motor task reinforces our suggestion. As in previous experiments, we observed commonalities and differences to strongly suggest the following: (1) the likely motoric nature of M.I. given the activation of motor/premotor cortices; (2) the much larger implementation of actual motor acts during M.E. (see the highly significant larger activation of M1/S1 in the M.E. task); and (3) the more cognitive nature of the M.I. task overall, as revealed by the recruitment of higher order premotor and parietal cortices during imagery, particularly in the younger participants.

  6. Our interpretation of the quality of mental imagery in the elderly relies on the distinctive fMRI patterns of the older subjects. We consider these an explicit neural signature because of the topographical distribution in occipital cortices of well-known functional properties. In principle, one could have used introspective descriptions of the M.I. experience to document departures from kinaesthetic imagery to visual imagery and used these departures to decipher the fMRI patterns. However, one may argue that there is no guarantee that introspective descriptions about the accuracy or style of the imagery procedure would be accurate. More crucially, the combination of introspective online descriptions of the quality of the imagery experience during fMRI would have changed the nature of our experiment quite dramatically by turning it into a meta-cognitive protocol about M.I., something very interesting but different from our intended scope. On the other hand, the post hoc correlation of the introspective descriptions with the fMRI activity would have proved temporally inaccurate and possibly difficult to analyse statistically. On the contrary, in our experiment, the emphasis was on explicitly measurable variables, such as the chronometric measures during M.E. and M.I. outside the scanner or the fMRI signal collected during standardised procedures and the ensuing correlations between the two sets of variables.

  7. We cannot claim evidence for a double functional anatomical dissociation, as we did not find significantly greater activations in motor-related structures in the younger subjects. Indeed, while the elderly subjects had greater activations in the occipital cortices, they still relied, in part, on the activity of motor cortices during M.I.

  8. It is worth reemphasising that the elderly also showed activation of the premotor cortices during their M.I. task. Therefore, we suggest that the “visual” mental imagery testified by the occipital additional activation might be a complementary strategy, rather than a completely alternative one.

  9. A similar interpretation was given by Zwergal et al. (2012) in a fMRI study on M.I. during imagined locomotion.

Abbreviations

BOLD:

Blood oxygen level dependent

FWE:

Family-wise error

fMRI:

Functional magnetic resonance imaging

M.E.:

Motor execution

MEP:

Motor-evoked potentials

M.I.:

Motor imagery

MRI:

Magnetic resonance imaging

SD:

Standard deviation

SMA:

Supplementary motor area

TMS:

Transcranial magnetic stimulation

rTMS:

Repetitive transcranial magnetic stimulation

References

  • Ashburner J, Friston K (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7(4):254–266

    Article  CAS  PubMed  Google Scholar 

  • Bartolomeo P (2008) The neural correlates of visual mental imagery: an ongoing debate. Cortex 44(2):107–108

    Article  PubMed  Google Scholar 

  • Berlingeri M, Bottini G, Danelli L, Ferri F, Traficante D, Sacheli L, Colombo N, Sberna M, Sterzi R, Scialfa G, Paulesu E (2010) With time on our side? Task-dependent compensatory processes in graceful aging. Exp Brain Res 205(3):307–324

    Article  CAS  PubMed  Google Scholar 

  • Bonda E, Petrides M, Ostry D, Evans A (1996) Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci 16:3737–3744

    CAS  PubMed  Google Scholar 

  • Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1):195–208

    Article  CAS  PubMed  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17(1):85–100

    Article  PubMed  Google Scholar 

  • Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17(3):1394–1402

    Article  PubMed  Google Scholar 

  • Calautti C, Serrati C, Baron JC (2001) Effects of age on brain activation during auditory-cued thumb-to-index opposition: a positron emission tomography study. Stroke 32(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Carlesimo GA, Buccione I, Fadda L, Graceffa A, Mauri M, Lorusso S, Bevilacqua G et al (2002) Standardizzazione di due test di memoria per uso clinico: Breve Racconto e Figura di Rey. Nuova Riv Neurol 12:1–13

    Google Scholar 

  • Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121(2):253–264

    Article  PubMed  Google Scholar 

  • Chan RC, Huang J, Di X (2009) Dexterous movement complexity and cerebellar activation: a meta-analysis. Brain Res Rev 59(2):316–323

    Article  PubMed  Google Scholar 

  • Coats RO, Wann JP (2011) The reliance on visual feedback control by older adults is highlighted in tasks requiring precise endpoint placement and precision grip. Exp Brain Res 214(1):139–150

    Article  PubMed  Google Scholar 

  • Conson M, Sacco S, Sarà M, Pistoia F, Grossi D, Trojano L (2008) Selective motor imagery defect in patients with locked-in syndrome. Neuropsychologia 46(11):2622–2628

    Article  PubMed  Google Scholar 

  • Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior–anterior shift in aging. Cereb Cortex 18(5):1201–1209

    Article  PubMed  Google Scholar 

  • de Lange FP, Hagoort P, Toni I (2005) Neural topography and content of movement representations. J Cogn Neurosci 17(1):97–112

    Article  PubMed  Google Scholar 

  • Deblieck C, Pesenti G, Scifo P, Fazio F, Bricolo E, Lo Russo G, Scialfa G, Cossu M, Bottini G, Paulesu E (2003) Preserved functional competence of perilesional areas in drug-resistant epilepsy with lesion in supplementary motor cortex: fMRI and neuropsychological observations. Neuroimage 20(4):2225–2234

    Article  CAS  PubMed  Google Scholar 

  • Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res 77(1–2):45–52

    Article  CAS  PubMed  Google Scholar 

  • Decety J, Jeannerod M (1995) Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res 72(1–2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Decety J, Jeannerod M, Prablanc C (1989) The timing of mentally represented actions. Behav Brain Res 34(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Deiber MP, Ibanez V, Honda M, Sadato N, Raman R, Hallett M (1998) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage 7(2):73–85. doi:10.1006/nimg.1997.0314

    Article  CAS  PubMed  Google Scholar 

  • Dickstein R, Deutsch JE (2007) Motor imagery in physical therapist practice. Phys Ther 87(7):942–953

    Article  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Google Scholar 

  • Friston K, Ashburner J, Frith C, Poline J, Heather J, Frackowiak RSJ (1995) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  • Friston K, Holmes A, Price C, Buchel C, Worsley K (1999) Multisubject fMRI studies and conjunction analyses. NeuroImage 10(4):385–396

    Article  CAS  PubMed  Google Scholar 

  • Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Brain Res Cogn Brain Res 20(2):226–241

    Article  PubMed  Google Scholar 

  • Georgopoulos AP, Massey JT (1987) Cognitive spatial-motor processes. 1. The making of movements at various angles from a stimulus direction. Exp Brain Res 65(2):361–370

    Article  CAS  PubMed  Google Scholar 

  • Gerardin E, Sirigu A, Lehéricy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10(11):1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17(4):305–309

    Article  CAS  PubMed  Google Scholar 

  • Grady CL, Maisog JM, Horwitz B, Ungerleider LG, Mentis MJ, Salerno JA, Pietrini P, Wagner E, Haxby JV (1994) Age-related changes in cortical blood flow activation during visual processing of faces and location. J Neurosci 14(3 Pt 2):1450–1462

    CAS  PubMed  Google Scholar 

  • Grezes J, Costes N, Decety J (1998) Top-down effect of strategy on the perception of human biological motion: a PET investigation. Cogn Neuropsychol 15:553–582

    Article  CAS  PubMed  Google Scholar 

  • Guillot A, Collet C (2005) Duration of mentally simulated movement: a review. J Mot Behav 37(1):10–20. doi:10.3200/JMBR.37.1.10-20

    Article  CAS  PubMed  Google Scholar 

  • Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J (2009) Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 30(7):2157–2172

    Article  PubMed  Google Scholar 

  • Hanakawa T, Immisch I, Toma K, Dimyan M, Van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89(2):989–1002

    Article  PubMed  Google Scholar 

  • Heuninckx S, Wenderoth N, Debaere F, Peeters R, Swinnen SP (2005) Neural basis of aging: the penetration of cognition into action control. J Neurosci 25(29):6787–6796

    Article  CAS  PubMed  Google Scholar 

  • Hodzic A, Muckli L, Singer W, Stirn A (2009) Cortical responses to self and others. Hum Brain Mapp 30(3):951–962. doi:10.1002/hbm.20558

    Article  PubMed  Google Scholar 

  • Holmes A, Friston K (1998) Generalisability, random effects and population inference. NeuroImage 7:S754

    Google Scholar 

  • Hovington CL, Brouwer B (2010) Guided motor imagery in healthy adults and stroke: does strategy matter? Neurorehabil Neural Repair 24(9):851–857

    Article  PubMed  Google Scholar 

  • Hutchinson S, Kobayashi M, Horkan CM, Pascual-Leone A, Alexander MP, Schlaug G (2002) Age-related differences in movement representation. Neuroimage 17(4):1720–1728

    Article  CAS  PubMed  Google Scholar 

  • Hutsler J, Galuske RA (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26(8):429–435. doi:10.1016/S0166-2236(03)00198-X

    Article  CAS  PubMed  Google Scholar 

  • Ietswaart M, Johnston M, Dijkerman HC, Joice S, Scott CL, MacWalter RS, Hamilton SJ (2011) Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain 134(Pt 5):1373–1386

    Article  PubMed  Google Scholar 

  • Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural systems for the generation of visual images. Neuron 28(3):979–990

    Article  CAS  PubMed  Google Scholar 

  • Jackson PL, Doyon J, Richards CL, Malouin F (2004) The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabil Neural Repair 18(2):106–111

    Article  PubMed  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14(1 Pt 2):S103–S109

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M, Decety J (1995) Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol 5(6):727–732

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9(6):735–739

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Frey SH (2004) Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients. Brain Cogn 55(2):328–331

    Article  PubMed  Google Scholar 

  • Kalisch T, Ragert P, Schwenkreis P, Dinse HR, Tegenthoff M (2009) Impaired tactile acuity in old age is accompanied by enlarged hand representations in somatosensory cortex. Cereb Cortex 19(7):1530–1538

    Article  PubMed  Google Scholar 

  • Kauranen K, Vanharanta H (1996) Influences of aging, gender, and handedness on motor performance of upper and lower extremities. Percept Mot Skills 82(2):515–525

    Article  CAS  PubMed  Google Scholar 

  • Kosslyn SM, Thompson WL, Kim IJ, Alpert NM (1995) Topographical representations of mental images in primary visual cortex. Nature 378(6556):496–498

    Article  CAS  PubMed  Google Scholar 

  • Kosslyn SM, Pascual-Leone A, Felician O, Camposano S, Keenan JP, Thompson WL, Ganis G, Sukel KE, Alpert NM (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284(5411):167–170

    Article  CAS  PubMed  Google Scholar 

  • Lafleur MF, Jackson PL, Malouin F, Richards CL, Evans AC, Doyon J (2002) Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements. Neuroimage 16(1):142–157. doi:10.1006/nimg.2001.1048

    Article  PubMed  Google Scholar 

  • Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to intention. Science 303(5661):1208–1210

    Article  CAS  PubMed  Google Scholar 

  • Lenz M, Tegenthoff M, Kohlhaas K, Stude P, Hoffken O, Gatica Tossi MA, Kalisch T, Dinse HR (2012) Increased excitability of somatosensory cortex in aged humans is associated with impaired tactile acuity. J Neurosci 32(5):1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Leonard G, Tremblay F (2007) Corticomotor facilitation associated with observation, imagery and imitation of hand actions: a comparative study in young and old adults. Exp Brain Res 177(2):167–175

    Article  PubMed  Google Scholar 

  • Liu KP, Chan CC, Lee TM, Hui-Chan CW (2004) Mental imagery for relearning of people after brain injury. Brain Inj 18(11):1163–1172

    Article  CAS  PubMed  Google Scholar 

  • Lotze M, Cohen LG (2006) Volition and imagery in neurorehabilitation. Cogn Behav Neurol 19(3):135–140

    Article  PubMed  Google Scholar 

  • Lulé D, Diekmann V, Kassubek J, Kurt A, Birbaumer N, Ludolph AC, Kraft E (2007) Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair 21(6):518–526

    Article  PubMed  Google Scholar 

  • Lumer ED, Friston KJ, Rees G (1998) Neural correlates of perceptual rivalry in the human brain. Science 280(5371):1930–1934

    Article  CAS  PubMed  Google Scholar 

  • Malouin F, Richards CL, Doyon J, Desrosiers J, Belleville S (2004) Training mobility tasks after stroke with combined mental and physical practice: a feasibility study. Neurorehabil Neural Repair 18(2):66–75

    Article  PubMed  Google Scholar 

  • Malouin F, Richards CL, Durand A (2010) Normal aging and motor imagery vividness: implications for mental practice training in rehabilitation. Arch Phys Med Rehabil 91(7):1122–1127

    Article  PubMed  Google Scholar 

  • Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, Weinberger DR (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58(4):630–635

    Article  CAS  PubMed  Google Scholar 

  • Mellet E, Petit L, Mazoyer B, Denis M, Tzourio N (1998) Reopening the mental imagery debate: lessons from functional anatomy. Neuroimage 8(2):129–139

    Article  CAS  PubMed  Google Scholar 

  • Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB (1999) The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 19(19):8560–8572

    CAS  PubMed  Google Scholar 

  • Mulder T (2007) Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm 114(10):1265–1278

    Article  PubMed  Google Scholar 

  • Mulder T, Hochstenbach JB, van Heuvelen MJ, den Otter AR (2007) Motor imagery: the relation between age and imagery capacity. Hum Mov Sci 26(2):203–211

    Article  PubMed  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869

    Article  CAS  PubMed  Google Scholar 

  • Nedelko V, Hassa T, Hamzei F, Weiller C, Binkofski F, Schoenfeld MA, Tüscher O, Dettmers C (2010) Age-independent activation in areas of the mirror neuron system during action observation and action imagery. A fMRI study. Restor Neurol Neurosci 28(6):737–747

    Google Scholar 

  • Novelli G, Papagno C, Capitani E, Laiacona M, Vallar G, Cappa SF (1986) Three clinical tests for the assessment of verbal long-term memory function: norms from 320 normal subjects. Arch Psicol Neurol Psichiatr 47:278–296

    Google Scholar 

  • O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stiimulus-specific brain regions. J Cogn Neurosci 12(6):1013–1023

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Orsini A, Grossi D, Capitani E, Laiacona M, Papagno C, Vallar G (1987) Verbal and spatial immediate memory span: normative data from 1355 adults and 1112 children. Ital J Neurol Sci 8(6):539–548

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313(5792):1402

    Article  CAS  PubMed  Google Scholar 

  • Page SJ, Levine P, Sisto S, Johnston MV (2001) A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil 15(3):233–240

    Article  CAS  PubMed  Google Scholar 

  • Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74(3):1037–1045

    CAS  PubMed  Google Scholar 

  • Penny W, Holmes AP (2004) Random-effects analysis. In: Frackowiak RJS et al. (eds) Human brain function. Elsevier, San Diego, pp 843–850

  • Personnier P, Paizis C, Ballay Y, Papaxanthis C (2008) Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements. Behav Brain Res 186(2):273–283

    Article  PubMed  Google Scholar 

  • Personnier P, Ballay Y, Papaxanthis C (2010a) Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements. Behav Brain Res 206(2):184–191

    Article  PubMed  Google Scholar 

  • Personnier P, Kubicki A, Laroche D, Papaxanthis C (2010b) Temporal features of imagined locomotion in normal aging. Neurosci Lett 476(3):146–149

    Article  CAS  PubMed  Google Scholar 

  • Phothisonothai M, Nakagawa M (2009) A classification method of different motor imagery tasks based on fractal features for brain-machine interface. J Integr Neurosci 8(1):95–122

    Article  PubMed  Google Scholar 

  • Raven J (1984) CPM. Coloured Progressive Matrices. OS, Firenze

    Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  CAS  PubMed  Google Scholar 

  • Saimpont A, Pozzo T, Papaxanthis C (2009) Aging affects the mental rotation of left and right hands. PLoS One 4(8):e6714

    Article  PubMed  CAS  Google Scholar 

  • Saxe R, Jamal N, Powell L (2006) My body or yours? The effect of visual perspective on cortical body representations. Cereb Cortex 16(2):178–182. doi:10.1093/cercor/bhi095

    Article  PubMed  Google Scholar 

  • Seghier ML (2008) Laterality index in functional MRI: methodological issues. Magn Reson Imaging 26(5):594–601. doi:10.1016/j.mri.2007.10.010

    Article  PubMed  Google Scholar 

  • Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex 4(6):601–620

    Article  CAS  PubMed  Google Scholar 

  • Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273(5281):1564–1568

    Article  CAS  PubMed  Google Scholar 

  • Skoura X, Papaxanthis C, Vinter A, Pozzo T (2005) Mentally represented motor actions in normal aging. I. Age effects on the temporal features of overt and covert execution of actions. Behav Brain Res 165(2):229–239

    Article  PubMed  Google Scholar 

  • Skoura X, Personnier P, Vinter A, Pozzo T, Papaxanthis C (2008) Decline in motor prediction in elderly subjects: right versus left arm differences in mentally simulated motor actions. Cortex 44(9):1271–1278

    Article  PubMed  Google Scholar 

  • Smith CD, Umberger GH, Manning EL, Slevin JT, Wekstein DR, Schmitt FA, Markesbery WR, Zhang Z, Gerhardt GA, Kryscio RJ, Gash DM (1999) Critical decline in fine motor hand movements in human aging. Neurology 53(7):1458–1461

    Article  CAS  PubMed  Google Scholar 

  • Spinnler H, Tognoni G (1987) Standardizzazione e taratura italiana di test neuropsicologici. Masson Italia Periodici, Milano

    Google Scholar 

  • Stenekes MW, Geertzen JH, Nicolai JP, De Jong BM, Mulder T (2009) Effects of motor imagery on hand function during immobilization after flexor tendon repair. Arch Phys Med Rehabil 90(4):553–559

    Article  PubMed  Google Scholar 

  • Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73(1):373–386

    CAS  PubMed  Google Scholar 

  • Stevens JA (2005) Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition 95(3):329–350

    Article  CAS  PubMed  Google Scholar 

  • Strauss E, Kosaka B, Wada J (1983) The neurobiological basis of lateralized cerebral function. A review. Hum Neurobiol 2(3):115–127

    CAS  PubMed  Google Scholar 

  • Vogt S (1995) On relations between perceiving, imagining and performing in the learning of cyclical movement sequences. Br J Psychol 86(Pt 2):191–216

    Article  PubMed  Google Scholar 

  • Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126(Pt 4):873–888

    Article  CAS  PubMed  Google Scholar 

  • Wechsler D (1945) A standardized memory scale for clinical use. J Psychol 19:87–95

    Article  Google Scholar 

  • Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356

    Article  PubMed  Google Scholar 

  • Worsley K, Friston K (1995) Analysis of fMRI time-series revisited—again. NeuroImage 2:173–181

    Article  CAS  PubMed  Google Scholar 

  • Worsley K, Friston K (2000) A test for a conjunction. Stat Probab Lett 47:135–140

    Article  Google Scholar 

  • Worsley K, Marrett S, Neelin P, Vandal A, Friston K, Evans A (1996) A unified statistical approach for determining significant voxels in images of cerebral activation. Hum Brain Mapp 4:58–73

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Hallett M (2005) The influence of normal human ageing on automatic movements. J Physiol 562(Pt 2):605–615

    CAS  PubMed  Google Scholar 

  • Yue G, Cole KJ (1992) Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 67(5):1114–1123

    CAS  PubMed  Google Scholar 

  • Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11(3):641–649

    CAS  PubMed  Google Scholar 

  • Zwergal A, Linn J, Xiong G, Brandt T, Strupp M, Jahn K (2012) Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging 33(6):1073–1084

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Department of Diagnostic Radiology and Bioimages of IRCCS Galeazzi and the Department of Neuroradiology of Niguarda Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Paulesu.

Additional information

L. Zapparoli and P. Invernizzi contributed equally to the authorship of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapparoli, L., Invernizzi, P., Gandola, M. et al. Mental images across the adult lifespan: a behavioural and fMRI investigation of motor execution and motor imagery. Exp Brain Res 224, 519–540 (2013). https://doi.org/10.1007/s00221-012-3331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3331-1

Keywords

Navigation