Skip to main content
Log in

The influence of motivational salience on saccade latencies

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Eye movements provide a direct link to study the allocation of overt attention to stimuli in the visual field. The initiation of saccades towards visual stimuli is known to be influenced by the bottom-up salience of stimuli as well as the motivational context of the task. Here, we asked whether the initiation of saccades is also influenced by the intrinsic motivational salience of a stimulus. Face stimuli were first associated with positive or negative motivational salience through instrumental learning. The same faces served as target stimuli in a subsequent saccade task, in which their motivational salience was no longer task-relevant. Participants performed either voluntary saccades, which required the selection of the saccade target out of two simultaneously presented stimuli (experiment 1), or reactive saccades, where only the target stimulus was presented (experiment 2). We found a specific effect of learned positive stimulus value on the latencies of voluntary saccades: For faces with high versus low positive motivational salience, saccadic latencies were significantly reduced. No such difference was observed for previously punished faces. In contrast, reactive saccades to both previously rewarded and punished faces were unaffected by learned stimulus value. Our findings show for the first time that saccadic preparation is susceptible to the acquired intrinsic motivational salience of visual stimuli. Based on the observation that only voluntary saccades but not reactive saccades were modulated, we conclude that the recruitment of neural processes for target identification is required to allow for an influence of motivational stimulus salience on saccadic preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson BA, Laurent PA, Yantis S (2011a) Value-driven attentional capture. Proc Natl Acad Sci USA 108:10367–10371

    Article  PubMed  CAS  Google Scholar 

  • Anderson BA, Laurent PA, Yantis S (2011b) Learned value magnifies salience-based attentional capture. PLoS One 6:e27926

    Article  PubMed  CAS  Google Scholar 

  • Armony JL, Dolan RJ (2002) Modulation of spatial attention by fear-conditioned stimuli: an event-related fMRI study. Neuropsychologia 40:817–826

    Article  PubMed  Google Scholar 

  • Bannerman RL, Milders M, de Gelder B, Sahraie A (2009) Orienting to threat: faster localization of fearful facial expressions and body postures revealed by saccadic eye movements. Proc Biol Sci 276:1635–1641

    Article  PubMed  Google Scholar 

  • Bannerman RL, Milders M, Sahraie A (2010) Attentional cueing: fearful body postures capture attention with saccades. J Vis 10:23

    Article  PubMed  Google Scholar 

  • Belova MA, Paton JJ, Salzman CD (2008) Moment-to-moment tracking of state value in the amygdala. J Neurosci 28:10023–10030

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21

    Article  PubMed  CAS  Google Scholar 

  • Blaukopf CL, DiGirolamo DJ (2006) Differential effects of reward and punishment on conscious and unconscious eye movements. Exp Brain Res 174:786–792

    Article  PubMed  Google Scholar 

  • Bonifacci P, Ricciardelli P, Lugli L, Pellicano A (2008) Emotional attention: effects of emotion and gaze direction on overt orienting of visual attention. Cogn Process 9:127–135

    Article  PubMed  Google Scholar 

  • Cornelissen FW, Kimmig H, Schira M, Rutschmann RM, Maguire RP, Broerse A, Den Boer JA, Greenlee MW (2002) Event-related fMRI responses in the human frontal eye fields in a randomized pro- and antisaccade task. Exp Brain Res 145:270–274

    Article  PubMed  Google Scholar 

  • Cousineau D (2005) Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutor Quant Methods Psychol 1:42–45

    Google Scholar 

  • Crouzet SM, Kirchner H, Thorpe SJ (2010) Fast saccades toward faces: face detection in just 100 ms. J Vis 10:1–17

    Article  PubMed  Google Scholar 

  • Curtis CE, Connolly JD (2008) Saccade preparation signals in the human frontal and parietal cortices. J Neurophysiol 99:133–145

    Article  PubMed  Google Scholar 

  • De Haan B, Morgan PS, Rorden C (2008) Covert orienting of attention and overt eye movements activate identical brain regions. Brain Res 1204:102–111

    Article  PubMed  Google Scholar 

  • Della Libera C, Chelazzi L (2006) Visual selective attention and the effects of monetary rewards. Psychol Sci 17:222–227

    Article  PubMed  Google Scholar 

  • Della Libera C, Chelazzi L (2009) Learning to attend and to ignore is a matter of gains and losses. Psychol Sci 20:778–784

    Article  PubMed  Google Scholar 

  • Della Libera C, Perlato A, Chelazzi L (2011) Dissociable effects of reward on attentional learning: from passive associations to active monitoring. PLoS One 6:e19460

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • DeSouza JFX, Menon RS, Everling S (2003) Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. J Neurophysiol 89:1016–1023

    Article  PubMed  Google Scholar 

  • Dorris MC, Paré M, Munoz DP (1997) Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci 17:8566–8579

    PubMed  CAS  Google Scholar 

  • Freedman DJ, Assad JA (2006) Experience-dependent representation of visual categories in parietal cortex. Nature 443:85–88

    Article  PubMed  CAS  Google Scholar 

  • Geyer T, Müller HJ, Krummenacher J (2008) Expectancies modulate attentional capture by salient color singletons. Vision Res 48:1315–1326

    Article  PubMed  Google Scholar 

  • Gottlieb J (2007) From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53:9–16

    Article  PubMed  CAS  Google Scholar 

  • Harris A, Adolphs R, Camerer C, Rangel A (2011) Dynamic construction of stimulus values in the ventromedial prefrontal cortex. PLoS ONE 6:e21074

    Article  PubMed  CAS  Google Scholar 

  • Hickey C, van Zoest W (2012) Reward creates oculomotor salience. Curr Biol 22:R19–R20

    Article  Google Scholar 

  • Hickey C, Chelazzi L, Theeuwes J (2010a) Reward changes salience in human vision via the anterior cingulate. J Neurosci 30:11096–11103

    Article  PubMed  CAS  Google Scholar 

  • Hickey C, Chelazzi L, Theeuwes J (2010b) Reward guides vision when it’s your thing: trait reward-seeking in reward-mediated visual priming. PLoS One 5:e14087

    Article  PubMed  Google Scholar 

  • Hong S, Hikosaka O (2011) Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning. Front Behav Neurosci 5:15

    Article  PubMed  Google Scholar 

  • Hunt AR, von Mühlenen A, Kingstone A (2007) The time course of attentional and oculomotor capture reveals a common cause. J Exp Psychol Hum Percept Perform 33:271–284

    Article  PubMed  Google Scholar 

  • Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res 40:1489–1506

    Article  PubMed  CAS  Google Scholar 

  • Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:194–203

    Article  PubMed  CAS  Google Scholar 

  • Jazbec S, Hardin MG, Schroth E, McClure E, Pine DS, Ernst M (2006) Age-related influence of contingencies on a saccade task. Exp Brain Res 174:754–762

    Article  PubMed  Google Scholar 

  • Kahnt T, Heinzle J, Park SQ, Haynes J-D (2011) Decoding different roles for vmPFC and dlPFC in multi-attribute decision making. Neuroimage 56:709–715

    Article  PubMed  Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vision Res 35:1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Ludwig CJH, Gilchrist ID, McSorley E (2004) The influence of spatial frequency and contrast on saccade latencies. Vision Res 44:2597–2604

    Article  PubMed  Google Scholar 

  • Madelain L, Paeye C, Darcheville J-C (2011) Operant control of human eye movements. Behav Process 87:142–148

    Article  Google Scholar 

  • Marino RA, Munoz DP (2009) The effects of bottom-up target luminance and top-down spatial target predictability on saccadic reaction times. Exp Brain Res 197:321–335

    Article  PubMed  Google Scholar 

  • McSorley E, Haggard P, Walker R (2006) Time course of oculomotor inhibition revealed by saccade trajectory modulation. J Neurophysiol 96:1420–1424

    Article  PubMed  Google Scholar 

  • Medendorp WP, Buchholz VN, Van Der Werf J, Leoné FTM (2011) Parietofrontal circuits in goal-oriented behaviour. Eur J Neurosci 33:2017–2027

    Article  PubMed  Google Scholar 

  • Milstein DM, Dorris MC (2007) The influence of expected value on saccadic preparation. J Neurosci 27:4810–4818

    Article  PubMed  CAS  Google Scholar 

  • Moher J, Abrams J, Egeth HE, Yantis S, Stuphorn V (2011) Trial-by-trial adjustments of top-down set modulate oculomotor capture. Psychon Bull Rev 18:897–903

    Article  PubMed  Google Scholar 

  • Montagnini A, Chelazzi L (2005) The urgency to look: prompt saccades to the benefit of perception. Vision Res 45:3391–3401

    Article  PubMed  Google Scholar 

  • Morand SM, Grosbras M-H, Caldara R, Harvey M (2010) Looking away from faces: influence of high-level visual processes on saccade programming. J Vis 10(16):1–10

    Article  PubMed  Google Scholar 

  • Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36:567–584

    Article  PubMed  CAS  Google Scholar 

  • Nummenmaa L, Hyönä J, Calvo MG (2009) Emotional scene content drives the saccade generation system reflexively. J Exp Psychol Hum Percept Perform 35:305–323

    Article  PubMed  Google Scholar 

  • O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  PubMed  Google Scholar 

  • Paré M, Munoz DP (1996) Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. J Neurophysiol 76:3666–3681

    PubMed  Google Scholar 

  • Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    Article  PubMed  CAS  Google Scholar 

  • Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045

    Article  PubMed  CAS  Google Scholar 

  • Pizzagalli DA, Lehmann D, Hendrick AM, Regard M, Pascual-Marqui RD, Davidson RJ (2002) Affective judgments of faces modulate early activity (approximately 160 ms) within the fusiform gyri. Neuroimage 16:663–677

    Article  PubMed  Google Scholar 

  • Ptak R (2012) The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist 18:502–515

    Google Scholar 

  • Ratcliff R (1979) Group reaction time distributions and an analysis of distribution statistics. Psychol Bull 86:446–461

    Article  PubMed  CAS  Google Scholar 

  • Raymond JE, O’Brien JL (2009) Selective visual attention and motivation: the consequences of value learning in an attentional blink task. Psychol Sci 20:981–988

    Article  PubMed  Google Scholar 

  • Redgrave P, Coizet V, Comoli E, McHaffie JG, Leriche M, Vautrelle N, Hayes LM, Overton P (2010) Interactions between the midbrain superior colliculus and the basal ganglia. Front Neuroanat 4:132

    Google Scholar 

  • Rolfs M, Vitu F (2007) On the limited role of target onset in the gap task: support for the motor-preparation hypothesis. J Vis 7:1–20

    Article  PubMed  Google Scholar 

  • Rolls ET (2007) The representation of information about faces in the temporal and frontal lobes. Neuropsychologia 45:124–143

    Article  PubMed  Google Scholar 

  • Ross M, Lanyon LJ, Viswanathan J, Manoach DS, Barton JJ (2011) Human prosaccades and antisaccades under risk: effects of penalties and rewards on visual selection and the value of actions. Neuroscience 196:168–177

    Article  PubMed  CAS  Google Scholar 

  • Rutherford HJV, O’Brien JL, Raymond JE (2010) Value associations of irrelevant stimuli modify rapid visual orienting. Psychon Bull Rev 17:536–542

    Article  PubMed  Google Scholar 

  • Rutishauser U, Koch C (2007) Probabilistic modeling of eye movement data during conjunction search via feature-based attention. J Vis 7:5

    Article  PubMed  Google Scholar 

  • Saslow MG (1967) Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J Opt Soc Am 57:1024–1029

    Article  PubMed  CAS  Google Scholar 

  • Soto D, Heinke D, Humphreys GW, Blanco MJ (2005) Early, involuntary top-down guidance of attention from working memory. J Exp Psychol Hum Percept Perform 31:248–261

    Article  PubMed  Google Scholar 

  • Sparks DL (2002) The brainstem control of saccadic eye movements. Nat Rev Neurosci 3:952–964

    Article  PubMed  CAS  Google Scholar 

  • Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the representation of value in the parietal cortex. Science 304:1782–1787

    Article  PubMed  CAS  Google Scholar 

  • Theeuwes J (1992) Perceptual selectivity for color and form. Percept Psychophys 51:599–606

    Article  PubMed  CAS  Google Scholar 

  • Theeuwes J, Kramer AF, Hahn S, Irwin DE (1998) Our eyes do not always go where we want them to go: capture of the eyes by new objects. Psychol Sci 9:379–385

    Article  Google Scholar 

  • Theeuwes J, Kramer AF, Hahn S, Irwin DE, Zelinsky GJ (1999) Influence of attentional capture on oculomotor control. J Exp Psychol Hum Percept Perform 25:1595–1608

    Article  PubMed  CAS  Google Scholar 

  • Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, Marcus DJ, Westerlund A, Casey BJ, Nelson C (2009) The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res 168:242–249

    Article  PubMed  Google Scholar 

  • Tovée MJ, Rolls ET, Treves A, Bellis RP (1993) Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol 70:640–654

    PubMed  Google Scholar 

  • Trappenberg TP, Dorris MC, Munoz DP, Klein RM (2001) A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci 13:256–271

    Article  PubMed  CAS  Google Scholar 

  • Valentin VV, Dickinson A, O’Doherty JP (2007) Determining the neural substrates of goal-directed learning in the human brain. J Neurosci 27:4019–4026

    Article  PubMed  CAS  Google Scholar 

  • Van Gisbergen JA, Van Opstal AJ, Tax AA (1987) Collicular ensemble coding of saccades based on vector summation. Neuroscience 21:541–555

    Article  PubMed  Google Scholar 

  • van Zoest W, Donk M (2010) Awareness of the saccade goal in oculomotor selection: your eyes go before you know. Conscious Cogn 19:861–871

    Article  PubMed  Google Scholar 

  • Wong JH, Peterson MS (2011) The interaction between memorized objects and abrupt onsets in oculomotor capture. Atten Percept Psychophys 73:1768–1779

    Article  PubMed  Google Scholar 

  • Xu-Wilson M, Zee DS, Shadmehr R (2009) The intrinsic value of visual information affects saccade velocities. Exp Brain Res 196:475–481

    Article  PubMed  Google Scholar 

  • Yacubian J, Gläscher J, Schroeder K, Sommer T, Braus DF, Büchel C (2006) Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J Neurosci 26:9530–9537

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Research Foundation (Emmy-Noether Programme, STE 1430/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Rothkirch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothkirch, M., Ostendorf, F., Sax, AL. et al. The influence of motivational salience on saccade latencies. Exp Brain Res 224, 35–47 (2013). https://doi.org/10.1007/s00221-012-3284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3284-4

Keywords

Navigation