Skip to main content
Log in

Mitochondrial involvement in sensory neuronal cell death and survival

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Peripheral nerve injuries (PNI) are continuing to be an ever-growing socio-economic burden affecting mainly the young working population and the current clinical treatments to PNI provide a poor clinical outcome involving significant loss of sensation. Thus, our understanding of the underlying factors responsible for the extensive loss of the sensory cutaneous subpopulation in the dorsal root ganglia (DRG) that occurs following injury needs to be improved. The current investigations focus in identifying visual cues of mitochondria-related apoptotic events in the various subpopulations of sensory cutaneous neurons. Sensory neuronal subpopulations were identified using FastBlue retrograde labelling following axotomy. Specialised fluorogenic probes, MitoTracker Red and MitoTracker Orange, were employed to visualise the dynamic changes of the mitochondrial population of neurons. The results reveal a fragmented mitochondrial network in sural neurons following apoptosis, whereas a fused elongated mitochondrial population is present in sensory proprioceptive muscle neurons following tibial axotomy. We also demonstrate the neuroprotective properties of NAC and ALCAR therapy in vitro. The dynamic mitochondrial network breaks down following oxidative exposure to hydrogen peroxide (H2O2), but reinitiates fusion after NAC and ALCAR therapy. In conclusion, this study provides both qualitative and quantitative evidence of the susceptibility of sensory cutaneous sub-population in apoptosis and of the neuroprotective effects of NAC and ALCAR treatment on H2O2-challenged neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barsoum MJ, Yuan H, Gerencser AA et al (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911. doi:10.1038/sj.emboj.7601253

    Article  PubMed  CAS  Google Scholar 

  • Benn SC, Woolf CJ (2004) Adult neuron survival strategies–slamming on the brakes. Nat Rev Neurosci 5:686–700. doi:10.1038/nrn1477

    Article  PubMed  CAS  Google Scholar 

  • Bremer J (1990) The role of carnitine in intracellular metabolism. J Clin Chem Clin Biochem 28:297–301

    PubMed  CAS  Google Scholar 

  • Buckman JF, Hernández H, Kress GJ, Votyakova TV, Pal S, Reynolds IJ (2001) MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J Neurosci Methods 104:165–176

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu L, Yin J, Luo Y, Huang S (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol 41:1284–1295. doi:10.1016/j.biocel.2008.10.029

    Article  PubMed  CAS  Google Scholar 

  • Cheung EC, McBride HM, Slack RS (2007) Mitochondrial dynamics in the regulation of neuronal cell death. Apoptosis 12:979–992. doi:10.1007/s10495-007-0745-5

    Article  PubMed  Google Scholar 

  • Di Cesare Mannelli L, Ghelardini C, Calvani M et al (2007) Protective effect of acetyl-L-carnitine on the apoptotic pathway of peripheral neuropathy. Eur J Neurosci 26:820–827. doi:10.1111/j.1460-9568.2007.05722.x

    Article  PubMed  Google Scholar 

  • Esposti MD, Hatzinisiriou I, McLennan H, Ralph S (1999) Bcl-2 and mitochondrial oxygen radicals. New approaches with reactive oxygen species-sensitive probes. J Biol Chem 274:29831–29837

    Article  PubMed  CAS  Google Scholar 

  • Ferrari G, Yan C, Greene L (1995) N-acetylcysteine (D- and L-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci 15:2857–2866

    PubMed  CAS  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  PubMed  CAS  Google Scholar 

  • Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflamm 8:110. doi:10.1186/1742-2094-8-110

    Article  Google Scholar 

  • Glater EE, Schwarz TL (2009) Encyclopedia of Neuroscience: mitochondrial organization and transport in neurons. Elsevier Ltd, Boston, MA

    Google Scholar 

  • Groves M, Christopherson T, Giometto B, Scaravilli F (1997) Axotomy-induced apoptosis in adult rat primary sensory neurons. J Neurocytol 26:615–624

    Article  PubMed  CAS  Google Scholar 

  • Hagen TM, Liu J, Lykkesfeldt J et al (2002) Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA 99:1870–1875. doi:10.1073/pnas.261708898

    Article  PubMed  CAS  Google Scholar 

  • Hart A, Terenghi G, Kellerth J, Wiberg M (2004) Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury. Neuroscience 125:91–101. doi:10.1016/j.neuroscience.2003.12.040

    Article  PubMed  CAS  Google Scholar 

  • Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  • Hu P, McLachlan E (2003) Selective reactions of cutaneous and muscle afferent neurons to peripheral nerve transection in rats. J Neurosci 23:10559–10567

    PubMed  CAS  Google Scholar 

  • Ishii T, Shimpo Y, Matsuoka Y, Kinoshita K (2000) Anti-apoptotic effect of acetyl-l-carnitine and I-carnitine in primary cultured neurons. Jpn J Pharmacol 83:119–124

    Article  PubMed  CAS  Google Scholar 

  • Lawen A (2003) Apoptosis-an introduction. BioEssays 25:888–896. doi:10.1002/bies.10329

    Article  PubMed  CAS  Google Scholar 

  • Lundborg G (2000) A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 25:391–414. doi:10.1053/jhsu.2000.4165

    Article  PubMed  CAS  Google Scholar 

  • McKay Hart A, Brannstrom T, Wiberg M, Terenghi G (2002) Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death and elimination. Exp Brain Res 142:308–318. doi:10.1007/s00221-001-0929-0

    Article  PubMed  Google Scholar 

  • Parcellier A, Tintignac LA, Zhuravleva E et al (2009) The carboxy-terminal modulator protein (CTMP) regulates mitochondrial dynamics. PLoS One 4:e5471. doi:10.1371/journal.pone.0005471

    Article  PubMed  Google Scholar 

  • Pettegrew JW, Levine J, McClure RJ (2000) Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 5:616–632

    Article  PubMed  CAS  Google Scholar 

  • Reid AJ, Shawcross SG, Hamilton AE, Wiberg M, Terenghi G (2009) N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations. Neurosci Res 65:148–155. doi:10.1016/j.neures.2009.06.008

    Article  PubMed  CAS  Google Scholar 

  • Reid AJ, Welin D, Wiberg M, Terenghi G, Novikov LN (2010) Peripherin and ATF3 genes are differentially regulated in regenerating and non-regenerating primary sensory neurons. Brain Res 1310:1–7. doi:10.1016/j.brainres.2009.11.011

    Article  PubMed  CAS  Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflamm 8:109. doi:10.1186/1742-2094-8-109

    Article  CAS  Google Scholar 

  • Senoglu M, Nacitarhan V, Kurutas EB, Senoglu N, Altun I, Atli Y, Ozbag D (2009) Intraperitoneal Alpha-Lipoic Acid to prevent neural damage after crush injury to the rat sciatic nerve. J Brachial Plex Peripher Nerve Inj 4:22. doi:10.1186/1749-7221-4-22

    Article  PubMed  Google Scholar 

  • Tandrup T, Woolf CJ, Coggeshall RE (2000) Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve. J Comp Neurol 422:172–180. doi:10.1002/(SICI)1096-9861(20000626)422:2<172::AID-CNE2>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  • Welin D, Novikova LN, Wiberg M, Kellerth JO, Novikov LN (2008) Survival and regeneration of cutaneous and muscular afferent neurons after peripheral nerve injury in adult rats. Exp Brain Res 186:315–323. doi:10.1007/s00221-007-1232-5

    Article  PubMed  Google Scholar 

  • Whittemore ER, Loo DT, Watt JA, Cotman CW (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67:921–932

    Article  PubMed  CAS  Google Scholar 

  • Wilson AD, Hart A, Brannstrom T, Wiberg M, Terenghi G (2003) Primary sensory neuronal rescue with systemic acetyl-L-carnitine following peripheral axotomy. A dose-response analysis. Br J Plast Surg 56:732–739

    Article  PubMed  Google Scholar 

  • Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663. doi:10.1038/nrm1697

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos C. Englezou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englezou, P.C., Esposti, M.D., Wiberg, M. et al. Mitochondrial involvement in sensory neuronal cell death and survival. Exp Brain Res 221, 357–367 (2012). https://doi.org/10.1007/s00221-012-3179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3179-4

Keywords

Navigation