Skip to main content
Log in

Unilateral hemispherectomy at adulthood asymmetrically affects motor performance of male Swiss mice

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Evidence exists indicating that cerebral lateralization is a fundamental feature of all vertebrates. In humans, a series of studies demonstrated that the left hemisphere plays a major role in controlling movement. No such asymmetries have been identified in rodents, in spite of the fact that these animals have been frequently used in studies assessing motor behavior. In this regard, here, we used unilateral hemispherectomy to study the relative importance of each hemisphere in controlling movement. Adult Swiss mice were submitted to right unilateral hemispherectomy (RH), left unilateral hemispherectomy (LH) or sham surgery. Fifteen days after surgery, motor performance was assessed in the accelerating rotarod test and in the foot-fault test (in which performance depends on skilled limb use) and in the elevated body swing test (in which performance depends on trunk movements). The surgical removal of the right hemisphere caused a more pronounced impairment in performance than the removal of the left hemisphere both in the rotarod and in the foot-fault tests. In the rotarod, the RH group presented smaller latencies to fall than both LH and sham groups. In the foot-fault test, while both the sham and the LH groups showed no differences between left and right hind limbs, the RH group showed significantly worse performance with the left hind limb than with the right one. The elevated body swing test revealed a similar impairment in the two hemispherectomized groups. Our data suggest a major role of the right hemisphere in controlling skilled limb movements in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Izki S, Kirkwood PA, Lemon RN, Enriquez DM (2008) Electrophysiological actions of the rubrospinal tract in the anaesthetised rat. Exp Neurol 212:118–131

    Article  PubMed  Google Scholar 

  • Annett M (2002) Handedness and brain asymmetry: the right shift theory. Psychology Press, New York

    Google Scholar 

  • Antal M, Sholomenko GN, Moschovakis AK, Storm-Mathisen J, Heizmann CW, Hunziker W (1992) The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: a light and electron microscopic study. J Comp Neurol 325:22–37

    Article  PubMed  CAS  Google Scholar 

  • Baskin YK, Dietrich WD, Green EJ (2003) Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J Neurosci Methods 129:87–93

    Article  PubMed  Google Scholar 

  • Bisazza A, Rogers LJ, Vallortigara G (1998) The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci Biobehav Rev 22:411–426

    Article  PubMed  CAS  Google Scholar 

  • Bona E, Johansson BB, Hagberg H (1997) Sensorimotor function and neuropathology 5–6 weeks after hypoxia-ischemia in 7-day-old rats. Pediatr Res 42:678–683

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Sanberg PR (1995) Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci 15:5372–5378

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Hida H, Nishino H (1998) Early assessment of motor dysfunctions aids in successful occlusion of the middle cerebral artery. Neuroreport 9:3615–3621

    Article  PubMed  CAS  Google Scholar 

  • Bracha HS (1987) Asymmetric rotational (circling) behavior, a dopamine-related asymmetry: preliminary findings in unmedicated and never-medicated schizophrenic patients. Biol Psychiatry 22:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw JL (2001) Asymmetries in preparation for action. Trends Cogn Sci 5:184–185

    Article  PubMed  Google Scholar 

  • Bradshaw JL, Rogers LJ (1996) Tool use and evolutionary development of manual asymmetry. In: Elliott D, Roy EA (eds) Manual asymmetries in motor performance. CRC Press, New York, pp 33–54

    Google Scholar 

  • Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519–529

    Article  PubMed  CAS  Google Scholar 

  • Brosamle C, Schwab ME (2000) Ipsilateral, ventral corticospinal tract of the adult rat: ultrastructure, myelination and synaptic connections. J Neurocytol 29:499–507

    Article  PubMed  CAS  Google Scholar 

  • Budilin SY, Midzyanovskaya IS, Shchegolevskii NV, Ioffe ME, Bazyan AS (2008) Asymmetry in dopamine levels in the nucleus accumbens and motor preference in rats. Neurosci Behav Physiol 38:991–994

    Article  PubMed  Google Scholar 

  • Collins RL (1968) On the inheritance of handedness. I. Laterality in inbred mice. J Hered 59:9–12

    PubMed  CAS  Google Scholar 

  • Corballis MC (2008) Of mice and men—and lopsided birds. Cortex 44:3–7

    Article  PubMed  Google Scholar 

  • Corballis MC (2009) The evolution and genetics of cerebral asymmetry. Philos Trans R Soc Lond B Biol Sci 364:867–879

    PubMed  CAS  Google Scholar 

  • de Bode S, Firestine A, Mathern GW, Dobkin B (2005) Residual motor control and cortical representations of function following hemispherectomy: effects of etiology. J Child Neurol 20:64–75

    Article  PubMed  Google Scholar 

  • Deumens R, Koopmans GC, Joosten EA (2005) Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol 77:57–89

    Article  PubMed  CAS  Google Scholar 

  • Dowling GA, Diamond MC, Murphy GM Jr, Johnson RE (1982) A morphological study of male rat cerebral cortical asymmetry. Exp Neurol 75:51–67

    Article  PubMed  CAS  Google Scholar 

  • Farr TD, Liu L, Colwell KL, Whishaw IQ, Metz GA (2006) Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. J Neurosci Methods 153:104–113

    Article  PubMed  Google Scholar 

  • Filgueiras CC, Manhães AC (2004) Effects of callosal agenesis on rotational side preference of BALB/cCF mice in the free swimming test. Behav Brain Res 155:13–25

    Article  PubMed  Google Scholar 

  • Filgueiras CC, Manhães AC (2005) Increased lateralization in rotational side preference in male mice rendered acallosal by prenatal gamma irradiation. Behav Brain Res 162:289–298

    Article  PubMed  Google Scholar 

  • Filgueiras CC, Abreu-Villaça Y, Krahe TE, Manhães AC (2006) Unilateral hemispherectomy at adulthood asymmetrically affects immobile behavior of male Swiss mice. Behav Brain Res 172:33–38

    Article  PubMed  Google Scholar 

  • Fink M, Wadsak W, Savli M, Stein P, Moser U, Hahn A, Mien LK, Kletter K, Mitterhauser M, Kasper S, Lanzenberger R (2009) Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET. Neuroimage 45:598–605

    Article  PubMed  Google Scholar 

  • Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game-theoretical analysis of population structure. Proc Biol Sci 271:853–857

    Article  PubMed  Google Scholar 

  • Ghirlanda S, Frasnelli E, Vallortigara G (2009) Intraspecific competition and coordination in the evolution of lateralization. Philos Trans R Soc Lond B Biol Sci 364:861–866

    PubMed  Google Scholar 

  • Goodale MA (1988) Hemispheric differences in motor control. Behav Brain Res 30:203–214

    Article  PubMed  CAS  Google Scholar 

  • Haaland KY (2006) Left hemisphere dominance for movement. Clin Neuropsychol 20:609–622

    Article  PubMed  Google Scholar 

  • Haaland KY, Harrington DL (1996) Hemispheric asymmetry of movement. Curr Opin Neurobiol 6:796–800

    Article  PubMed  CAS  Google Scholar 

  • Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313

    Article  PubMed  Google Scholar 

  • Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM (2004) Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci 16:621–636

    Article  PubMed  Google Scholar 

  • Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:187–196

    Article  PubMed  CAS  Google Scholar 

  • Harrington DL, Haaland KY (1991) Hemispheric specialization for motor sequencing: abnormalities in levels of programming. Neuropsychologia 29:147–163

    Article  PubMed  CAS  Google Scholar 

  • He Y, Zang Y, Jiang T, Gong G, Xie S, Xiao J (2006) Handedness-related functional connectivity using low-frequency blood oxygenation level-dependent fluctuations. Neuroreport 17:5–8

    Article  PubMed  Google Scholar 

  • Heim S, Kissler J, Elbert T, Rockstroh B (2004) Cerebral lateralization in schizophrenia and dyslexia: neuromagnetic responses to auditory stimuli. Neuropsychologia 42:692–697

    Article  PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Kennedy DN, Filipek PA, Bakardjiev AI, Hodgson J, Takeoka M, Makris N, Caviness VS Jr (2005) Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128:213–226

    Article  PubMed  CAS  Google Scholar 

  • Hernandez TD, Schallert T (1988) Seizures and recovery from experimental brain damage. Exp Neurol 102:318–324

    Article  PubMed  CAS  Google Scholar 

  • Hicks SP, D’Amato CJ (1970) Motor-sensory and visual behavior after hemispherectomy in newborn and mature rats. Exp Neurol 29:416–438

    Article  PubMed  CAS  Google Scholar 

  • Hirnstein M, Hausmann M, Gunturkun O (2008) The evolutionary origins of functional cerebral asymmetries in humans: does lateralization enhance parallel processing? Behav Brain Res 187:297–303

    Article  PubMed  Google Scholar 

  • Hunter AJ, Hatcher J, Virley D, Nelson P, Irving E, Hadingham SJ, Parsons AA (2000) Functional assessments in mice and rats after focal stroke. Neuropharmacology 39:806–816

    Article  PubMed  CAS  Google Scholar 

  • Hurtado O, Cardenas A, Pradillo JM, Morales JR, Ortego F, Sobrino T, Castillo J, Moro MA, Lizasoain I (2007) A chronic treatment with CDP-choline improves functional recovery and increases neuronal plasticity after experimental stroke. Neurobiol Dis 26:105–111

    Article  PubMed  CAS  Google Scholar 

  • Huynh H, Feldt LS (1976) Estimation of BOX correction for degrees of freedom from sample data in randomized block and split-plot designs. J Edu Stat 1:69–82. Ref type: generic

    Google Scholar 

  • Ishibashi S, Kuroiwa T, Endo S, Okeda R, Mizusawa H (2003) Neurological dysfunctions versus regional infarction volume after focal ischemia in Mongolian gerbils. Stroke 34:1501–1506

    Article  PubMed  Google Scholar 

  • Iturria-Medina Y, Fernandez AP, Morris DM, Canales-Rodriguez EJ, Haroon HA, Penton LG, Augath M, Garcia LG, Logothetis N, Parker GJ, Melie-Garcia L (2010) Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex 21(1):56–67

    Article  PubMed  Google Scholar 

  • Jang SH (2009) A review of the ipsilateral motor pathway as a recovery mechanism in patients with stroke. NeuroRehabilitation 24:315–320

    PubMed  Google Scholar 

  • Jankowska E, Edgley SA (2006) How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist 12:67–79

    Article  PubMed  Google Scholar 

  • Josse G, Tzourio-Mazoyer N (2004) Hemispheric specialization for language. Brain Res Brain Res Rev 44:1–12

    Article  PubMed  Google Scholar 

  • Keller SS, Crow T, Foundas A, Amunts K, Roberts N (2009) Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain Lang 109:29–48

    Article  PubMed  Google Scholar 

  • Klimkeit EI, Bradshaw JL (2006) Anomalous lateralisation in neurodevelopmental disorders. Cortex 42:113–116

    Article  PubMed  Google Scholar 

  • Kolb B, Sutherland RJ, Nonneman AJ, Whishaw IQ (1982) Asymmetry in the cerebral hemispheres of the rat, mouse, rabbit, and cat: the right hemisphere is larger. Exp Neurol 78:348–359

    Article  PubMed  CAS  Google Scholar 

  • Krahe TE, Filgueiras CC, Caparelli-Dáquer EM, Schmidt SL (2001) Contralateral rotatory bias in the free-swimming test after unilateral hemispherectomy in adult Swiss mice. Int J Neurosci 108:21–30

    Article  PubMed  CAS  Google Scholar 

  • Krahe TE, Filgueiras CC, Schmidt SL (2002) Effects of rotational side preferences on immobile behavior of normal mice in the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 26:169–176

    Article  PubMed  Google Scholar 

  • Kubos KL, Robinson RG (1984) Asymmetrical effects of cortical island lesions in the rat. Behav Brain Res 11:89–93

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Strazielle C (2007) Brain regions and genes affecting postural control. Prog Neurobiol 81:45–60

    Article  PubMed  CAS  Google Scholar 

  • Lent R, Schmidt SL (1993) The ontogenesis of the forebrain commissures and the determination of brain asymmetries. Prog Neurobiol 40:249–276

    Article  PubMed  CAS  Google Scholar 

  • Levy J (1977) The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann NY Acad Sci 299:264–272

    Article  PubMed  CAS  Google Scholar 

  • Loscher W (2010) Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions. Neurosci Biobehav Rev 34:31–49

    Article  PubMed  Google Scholar 

  • Machado AG, Shoji A, Ballester G, Marino R Jr (2003) Mapping of the rat’s motor area after hemispherectomy: the hemispheres as potentially independent motor brains. Epilepsia 44:500–506

    Article  PubMed  Google Scholar 

  • MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. Sci Am 301:60–67

    Article  PubMed  Google Scholar 

  • Maldonado MA, Allred RP, Felthauser EL, Jones TA (2008) Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats. Neurorehabil Neural Repair 22:250–261

    Article  PubMed  Google Scholar 

  • Manhães AC, Schmidt SL, Caparelli-Dáquer EM (1993) Paw preference in mice with callosal defects induced by prenatal gamma irradiation. Braz J Med Biol Res 26:1213–1218

    PubMed  Google Scholar 

  • Manhães AC, Krahe TE, Caparelli-Dáquer E, Ribeiro-Carvalho A, Schmidt SL, Filgueiras CC (2003) Neonatal transection of the corpus callosum affects paw preference lateralization of adult Swiss mice. Neurosci Lett 348:69–72

    Article  PubMed  Google Scholar 

  • Manhães AC, Schmidt SL, Filgueiras CC (2005) Callosal agenesis affects consistency of laterality in a paw preference task in BALB/cCF mice. Behav Brain Res 159:43–49

    Article  PubMed  Google Scholar 

  • Manhães AC, Abreu-Villaça Y, Schmidt SL, Filgueiras CC (2007) Neonatal transection of the corpus callosum affects rotational side preference in adult Swiss mice. Neurosci Lett 415:159–163

    Article  PubMed  Google Scholar 

  • Marino R Jr, Machado AG, Timo-Iaria C (2001) Functional recovery after combined cerebral and cerebellar hemispherectomy in the rat. Stereotact Funct Neurosurg 76:83–93

    Article  PubMed  Google Scholar 

  • McMahon FJ, Moran TH, Robinson RG (1989) Hyperactivity following posterior cortical injury is lateralized, sensitive to lesion size and independent of the nigrostriatal dopamine system. Brain Res 503:185–190

    Article  PubMed  CAS  Google Scholar 

  • Miklyaeva EI, Varlinskaya EI, Ioffe ME, Mats VN, Pokazanyeva LN, Kulikov MA (1993) Differences in the recovery rate of a learned forelimb movement after ablation of the motor cortex in right and left hemisphere in white rats. Behav Brain Res 56:145–154

    Article  PubMed  CAS  Google Scholar 

  • Monville C, Torres EM, Dunnett SB (2006) Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods 158:219–223

    Article  PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man: course and location of fibres at different segmental levels. Brain 113(Pt 2):303–324

    Article  PubMed  Google Scholar 

  • Piot-Grosjean O, Wahl F, Gobbo O, Stutzmann JM (2001) Assessment of sensorimotor and cognitive deficits induced by a moderate traumatic injury in the right parietal cortex of the rat. Neurobiol Dis 8:1082–1093

    Article  PubMed  CAS  Google Scholar 

  • Pirko I, Johnson AJ, Lohrey AK, Chen Y, Ying J (2009) Deep gray matter T2 hypointensity correlates with disability in a murine model of MS. J Neurol Sci 282:34–38

    Article  PubMed  Google Scholar 

  • Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Noppeney U, Koepp MJ, Duncan JS (2006) Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. Neuroimage 32:388–399

    Article  PubMed  Google Scholar 

  • Qu C, Mahmood A, Lu D, Goussev A, Xiong Y, Chopp M (2008) Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 1208:234–239

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro-Carvalho A, Abreu-Villaça Y, Paes-Branco D, Filgueiras CC, Manhães AC (2010) Novelty affects paw preference performance in adult mice. Anim Behav 80:51–57

    Article  Google Scholar 

  • Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex 4:331–343

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG (1979) Differential behavioral and biochemical effects of right and left hemispheric cerebral infarction in the rat. Science 205:707–710

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ, Andrew R (2002) Comparative vertebrate lateralization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rogers BP, Carew JD, Meyerand ME (2004a) Hemispheric asymmetry in supplementary motor area connectivity during unilateral finger movements. Neuroimage 22:855–859

    Article  PubMed  Google Scholar 

  • Rogers LJ, Zucca P, Vallortigara G (2004b) Advantages of having a lateralized brain. Proc Biol Sci 271(Suppl 6):S420–S422

    Article  PubMed  Google Scholar 

  • Rosen GD, Sherman GF, Galaburda AM (1992) Biological substrates of anatomic asymmetry. Prog Neurobiol 39:507–515

    Article  PubMed  CAS  Google Scholar 

  • Rotenberg VS (2004) The peculiarity of the right-hemisphere function in depression: solving the paradoxes. Prog Neuropsychopharmacol Biol Psychiatry 28:1–13

    Article  PubMed  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2007) Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain 130:2146–2158

    Article  PubMed  Google Scholar 

  • Schluter ND, Krams M, Rushworth MF, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39:105–113

    Article  PubMed  CAS  Google Scholar 

  • Schmanke TD, Avery RA, Barth TM (1996) The effects of amphetamine on recovery of function after cortical damage in the rat depend on the behavioral requirements of the task. J Neurotrauma 13:293–307

    PubMed  CAS  Google Scholar 

  • Schmidt SL, Manhães AC, de Moraes V (1991) The effects of total and partial callosal agenesis on the development of paw preference performance in the BALB/cCF mouse. Brain Res 545:123–130

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SL, Filgueiras CC, Krahe TE (1999) Effects of sex and laterality on the rotatory swimming behavior of normal mice. Physiol Behav 65:607–616

    Article  PubMed  CAS  Google Scholar 

  • Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331

    Article  PubMed  CAS  Google Scholar 

  • Shelton SB, Pettigrew DB, Hermann AD, Zhou W, Sullivan PM, Crutcher KA, Strauss KI (2008) A simple, efficient tool for assessment of mice after unilateral cortex injury. J Neurosci Methods 168:431–442

    Article  PubMed  Google Scholar 

  • Shen H, Wang Y (2010) Correlation of locomotor activity and brain infarction in rats with transient focal ischemia. J Neurosci Methods 186:150–154

    Article  PubMed  Google Scholar 

  • Stashkevich IS, Kulik MA (2010) Characteristics of the performance of a formed motor skill by rats with different motor preferences. Neurosci Behav Physiol 40:225–230

    Article  PubMed  CAS  Google Scholar 

  • Stroemer RP, Kent TA, Hulsebosch CE (1995) Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 26:2135–2144

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Ornstein K, Teitelbaum P, Golani I (1985) The morphogenesis of stereotyped behavior induced by the dopamine receptor agonist apomorphine in the laboratory rat. Neuroscience 14:783–798

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G (2006) The evolutionary psychology of left and right: costs and benefits of lateralization. Dev Psychobiol 48:418–427

    Article  PubMed  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589

    PubMed  Google Scholar 

  • Vallortigara G, Chiandetti C, Sovrano VA (2011) Brain asymmetry (animal). Wiley Interdiscip Rev Cogn Sci 2:146–157

    Article  Google Scholar 

  • Villablanca JR, Hovda DA (2000) Developmental neuroplasticity in a model of cerebral hemispherectomy and stroke. Neuroscience 95:625–637

    Article  PubMed  CAS  Google Scholar 

  • Whishaw IQ, Gorny B, Sarna J (1998) Paw and limb use in skilled and spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the rat: behavioral and anatomical dissociations. Behav Brain Res 93:167–183

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Kaneko Y, Bae E, Stahl CE, Wang Y, van Loveren H, Sanberg PR, Borlongan CV (2009) Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res 1287:157–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and by Sub-reitoria de Pós-graduação e Pesquisa da Universidade do Estado do Rio de Janeiro (SR2-UERJ). DPB receives a FAPERJ M.Sc. fellowship, while Yael Abreu-Villaça, Alex C. Manhães and Cláudio C. Filgueiras are CNPq and FAPERJ research fellows. The authors are thankful to Edson Oliveira and Ulisses Risso Siqueira for animal care.

Conflict of interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio C. Filgueiras.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paes-Branco, D., Abreu-Villaça, Y., Manhães, A.C. et al. Unilateral hemispherectomy at adulthood asymmetrically affects motor performance of male Swiss mice. Exp Brain Res 218, 465–476 (2012). https://doi.org/10.1007/s00221-012-3034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3034-7

Keywords

Navigation