Skip to main content
Log in

Cervico-ocular coordination during neck rotation is distorted in people with whiplash-associated disorders

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

People with whiplash-associated disorders (WAD) not only suffer from neck/head pain, but commonly report deficits in eye movement control. Recent work has highlighted a strong relationship between eye and neck muscle activation in pain-free subjects. It is possible that WAD may disrupt the intricate coordination between eye and neck movement. Electromyographic activity (EMG) of muscles that rotate the cervical spine to the right (left sternocleidomastoid, right obliquus capitis inferior (OI), right splenius capitis (SC) and right multifidus (MF)) was recorded in nine people with chronic WAD. Cervical rotation was performed with five gaze conditions involving different gaze directions relative to cervical rotation. The relationship between eye position/movement and neck muscle activity was contrasted with previous observations from pain-free controls. Three main differences were observed in WAD. First, the superficial muscle SC was active with both directions of cervical rotation in contrast to activity only with right rotation in pain-free controls. Second, activity of OI and MF varied between directions of cervical rotation, unlike the non-direction-specific activity in controls. Third, the effect of horizontal gaze direction on neck muscle EMG was augmented compared to controls. These observations provide evidence of redistribution of activity between neck muscles during cervical rotation and increased interaction between eye and neck muscle activity in people with WAD. These changes in cervico-ocular coordination may underlie clinical symptoms reported by people with WAD that involve visual deficits and changes in function during cervical rotation such as postural control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JS, Hsu AW, Vasavada AN (2005) Morphology, architecture, and biomechanics of human cervical multifidus. Spine 30(4):E86–E91

    Article  PubMed  Google Scholar 

  • Andre-Deshays C, Berthoz A, Revel M (1988) Eye-head coupling in humans. I. Simultaneous recording of isolated motor units in dorsal neck muscles and horizontal eye movements. Exp Brain Res 69:399–406

    Article  PubMed  CAS  Google Scholar 

  • Azar NR, Kallakuri S, Chen C, Lu Y, Cavanaugh JM (2009) Strain and load thresholds for cervical muscle recruitment in response to quasi-static tensile stretch of the caprine C5–C6 facet joint capsule. J Electromyogr Kinesiol 19(6):e387–e394

    Article  PubMed  Google Scholar 

  • Barnsley L, Lord S, Bogduk N (1994) Whiplash injury. Pain 58(3):283–307

    Article  PubMed  CAS  Google Scholar 

  • Bexander CS, Mellor R, Hodges PW (2005) Effect of gaze direction on neck muscle activity during cervical rotation. Exp Brain Res 167(3):422–432. doi:10.1007/s00221-005-0048-4

    Article  PubMed  Google Scholar 

  • Boyd-Clark LC, Briggs CA, Galea MP (2002) Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the cervical spine. Spine 27(7):694–701

    Article  PubMed  CAS  Google Scholar 

  • Cheng CH, Chen PJ, Kuo YW, Wang JL (2011) The effects of disc degeneration and muscle dysfunction on cervical spine stability from a biomechanical study. Proc Inst Mech Eng H 225(2):149–157

    Article  PubMed  Google Scholar 

  • Cresswell AG, Grundstrom H, Thorstensson A (1992) Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol Scand 144:409–418

    Article  PubMed  CAS  Google Scholar 

  • Dall’Alba PT, Sterling MM, Treleaven JM, Edwards SL, Jull GA (2001) Cervical range of motion discriminates between asymptomatic persons and those with whiplash. Spine 26(19):2090–2094

    Article  PubMed  Google Scholar 

  • Edgerton VR, Enoka RM (1994) Adaptive properties of the sensorimotor system. Med Sci Sports Exercise 26(12):1473–1474

    CAS  Google Scholar 

  • Elert J, Kendall SA, Larsson B, Mansson B, Gerdle B (2001) Chronic pain and difficulty in relaxing postural muscles in patients with fibromyalgia and chronic whiplash associated disorders. J Rheumatol 28(6):1361–1368

    PubMed  CAS  Google Scholar 

  • Elliott J, Jull G, Noteboom JT, Darnell R, Galloway G, Gibbon WW (2006) Fatty infiltration in the cervical extensor muscles in persistent whiplash-associated disorders: a magnetic resonance imaging analysis. Spine 31(22):E847–E855. doi:10.1097/01.brs.0000240841.07050.34

    Article  PubMed  Google Scholar 

  • Elliott JM, Jull GA, Noteboom JT, Durbridge GL, Gibbon WW (2007) Magnetic resonance imaging study of cross-sectional area of the cervical extensor musculature in an asymptomatic cohort. Clin Anat 20(1):35–40

    Article  PubMed  CAS  Google Scholar 

  • Falla D, Dall’Alba P, Rainoldi A, Merletti R, Jull G (2002) Repeatability of surface EMG variables in the sternocleidomastoid and anterior scalene muscles. Eur J Appl Physiol 87(6):542–549

    Article  PubMed  Google Scholar 

  • Falla D, Jull G, Hodges PW (2004a) Feedforward activity of the cervical flexor muscles during voluntary arm movements is delayed in chronic neck pain. Exp Brain Res 157(1):43–48

    Article  PubMed  CAS  Google Scholar 

  • Falla DL, Jull GA, Hodges PW (2004b) Patients with neck pain demonstrate reduced electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test. Spine 29(19):2108–2114

    Article  PubMed  Google Scholar 

  • Falla D, Farina D, Dahl MK, Graven-Nielsen T (2007) Muscle pain induces task-dependent changes in cervical agonist/antagonist activity. J Appl Physiol 102(2):601–609

    Article  PubMed  CAS  Google Scholar 

  • Gimse R, Tjell C, Bjorgen I, Saunte C (1996) Disturbed eye movements after whiplash due to injuries to the posture control system. J Clin Exp Neuropsychol 18:178–186

    Article  PubMed  CAS  Google Scholar 

  • Hadjidimitrakis K, Moschovakis AK, Dalezios Y, Grantyn A (2007) Eye position modulates the electromyographic responses of neck muscles to electrical stimulation of the superior colliculus in the alert cat. Exp Brain Res 179(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Lennerstrand G (1995) Eye movements in normal subjects induced by vibratory activation of neck muscle proprioceptors. Acta Ophthalmol Scand 73:414–416

    Article  PubMed  CAS  Google Scholar 

  • Hannecke V, Mayoux-Benhamou MA, Bonnichon P, Butler-Browne GS, Michel P, Pompidou A, Barbet JP (2001) Metabolic differentiation of the human longus colli muscle. Morphologie 85(269):9–12

    PubMed  CAS  Google Scholar 

  • Heikkila HV, Wenngren BI (1998) Cervicocephalic kinesthetic sensibility, active range of cervical motion, and oculomotor function in patients with whiplash injury. Arch Phys Med Rehabil 79(9):1089–1094

    Article  PubMed  CAS  Google Scholar 

  • Hides JA, Stokes MJ, Saide M, Jull GA, Cooper DH (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 19(2):165–177

    Article  PubMed  CAS  Google Scholar 

  • Hildingsson C, Wenngren BI, Bring G, Toolanen G (1989) Oculomotor problems after cervical spine injury. Acta Orthop Scand 60(5):513–516

    Article  PubMed  CAS  Google Scholar 

  • Hodges PW, Richardson CA (1996) Inefficient muscular stabilisation of the lumbar spine associated with low back pain: a motor control evaluation of transversus abdominis. Spine 21:2640–2650

    Article  PubMed  CAS  Google Scholar 

  • Hodges PW, Richardson CA (1997) Feedforward contraction of transversus abdominis in not influenced by the direction of arm movement. Exp Brain Res 114:362–370

    Article  PubMed  CAS  Google Scholar 

  • Hodges P, Tucker K (2011) Moving differently in pain: a new theory to explain the adaptation to pain. Pain 152(Biennial Review):S90–S98

    Google Scholar 

  • Hodges PW, Moseley GL, Gabrielsson A, Gandevia SC (2003) Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res 151(2):262–271

    Article  PubMed  Google Scholar 

  • Hodges PW, KaigleHolm A, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 31(25):2926–2933

    Article  PubMed  Google Scholar 

  • Jull G, Kristjansson E, Dall’Alba P (2004) Impairment in the cervical flexors: a comparison of whiplash and insidious onset neck pain patients. Man Ther 9(2):89–94

    Article  PubMed  CAS  Google Scholar 

  • Kelders WP, Kleinrensink GJ, van der Geest JN, Schipper IB, Feenstra L, De Zeeuw CI, Frens MA (2005) The cervico-ocular reflex is increased in whiplash injury patients. J Neurotrauma 22(1):133–137

    Article  PubMed  CAS  Google Scholar 

  • Klein GN, Mannion AF, Panjabi MM, Dvorak J (2001) Trapped in the neutral zone: another symptom of whiplash-associated disorder? Eur Spine J 10(2):141–148

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni V, Chandy MJ, Babu KS (2001) Quantitative study of muscle spindles in suboccipital muscles of human foetuses. Neurol India 49(4):355–359

    PubMed  CAS  Google Scholar 

  • Lee LJ, Coppieters MW, Hodges PW (2005) Differential activation of the thoracic multifidus and longissimus thoracis during trunk rotation. Spine 30(8):870–876

    Article  PubMed  Google Scholar 

  • Leigh R, Zee D (1999) Eye-head movements. In: Leigh R, Zee D (eds) The neurology of eye movements. Oxford University Press, New York, pp 233–263

    Google Scholar 

  • Levander B, Gerdle B (1998) Spectrum of sequelae after whiplash injury. Localization and development in relation to the clinical picture. Lakartidningen 95(38):4076–4078, 4081–4084

    Google Scholar 

  • Lindstrom R, Schomacher J, Farina D, Rechter L, Falla D (2011) Association between neck muscle coactivation, pain, and strength in women with neck pain. Man Ther 16(1):80–86

    Article  PubMed  Google Scholar 

  • MacDonald D, Moseley GL, Hodges PW (2009) Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain 142(3):183–188

    Article  PubMed  Google Scholar 

  • MacDonald D, Moseley GL, Hodges PW (2010) People with recurrent low back pain respond differently to trunk loading despite remission from symptoms. Spine 35(7):818–824

    PubMed  Google Scholar 

  • Mayoux-Benhamou MA, Revel M, Vallee C (1997) Selective electromyography of dorsal neck muscles in humans. Exp Brain Res 113:353–360

    Article  PubMed  CAS  Google Scholar 

  • Montfoort I, Kelders WP, van der Geest JN, Schipper IB, Feenstra L, De Zeeuw CI, Frens MA (2006) Interaction between ocular stabilization reflexes in patients with whiplash injury. Invest Ophthalmol Vis Sci 47(7):2881–2884

    Article  PubMed  Google Scholar 

  • Montfoort I, Van Der Geest JN, Slijper HP, De Zeeuw CI, Frens MA (2008) Adaptation of the cervico- and vestibulo-ocular reflex in whiplash injury patients. J Neurotrauma 25(6):687–693

    Article  PubMed  Google Scholar 

  • Moseley GL, Hodges PW, Gandevia SC (2002) Deep and superficial fibers of lumbar multifidus are differentially active during voluntary arm movements. Spine 27:E29–E36

    Article  PubMed  Google Scholar 

  • Moseley GL, Nicholas MK, Hodges PW (2004) Does anticipation of back pain predispose to back trouble? Brain 127(Pt 10):2339–2347

    Article  PubMed  Google Scholar 

  • Nederhand MJ, Ijzerman MJ, Hermens HJ, Baten CT, Zilvold G (2000) Cervical muscle dysfunction in the chronic whiplash associated disorder grade II (WAD-II). Spine 25(15):1938–1943

    Article  PubMed  CAS  Google Scholar 

  • Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5(4):383–389

    Google Scholar 

  • Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management. Spine 20(8 Suppl):1S–73S

    PubMed  CAS  Google Scholar 

  • Sterling M, Jull G, Wright A (2001) The effect of musculoskeletal pain on motor activity and control. J Pain 2(3):135–145

    Article  PubMed  CAS  Google Scholar 

  • Sterling M, Jull G, Vicenzino B, Kenardy J (2004) Characterization of acute whiplash-associated disorders. Spine 29(2):182–188

    Article  PubMed  Google Scholar 

  • Takebe K, Vitti M, Basmajian JV (1974) The functions of semispinalis capitis and splenius capitis muscles: an electromyographic study. Anat Rec 179(4):477–480

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Finch P (1993) Acute injury of the neck: anatomical and pathological basis of pain. Ann Acad Med Singapore 22(2):187–192

    PubMed  CAS  Google Scholar 

  • Taylor JL, McCloskey DI (1992) Detection of slow movements imposed at the elbow during active flexion in man. J Physiol 457:503–513

    PubMed  CAS  Google Scholar 

  • Tjell C, Rosenhall U (1998) Smooth pursuit neck torsion test: a specific test for cervical dizziness. Am J Otol 19(1):76–81

    PubMed  CAS  Google Scholar 

  • Treleaven J, Jull G, Sterling M (2003) Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error. J Rehabil Med 35(1):36–43

    Article  PubMed  Google Scholar 

  • Treleaven J, Jull G, LowChoy N (2005) Smooth pursuit neck torsion test in whiplash-associated disorders: relationship to self-reports of neck pain and disability, dizziness and anxiety. J Rehabil Med 37(4):219–223

    Article  PubMed  Google Scholar 

  • Treleaven J, Jull G, LowChoy N (2006) The relationship of cervical joint position error to balance and eye movement disturbances in persistent whiplash. Man Ther 11(2):99–106

    Article  PubMed  Google Scholar 

  • Treleaven J, LowChoy N, Darnell R, Panizza B, Brown-Rothwell D, Jull G (2008) Comparison of sensorimotor disturbance between subjects with persistent whiplash-associated disorder and subjects with vestibular pathology associated with acoustic neuroma. Arch Phys Med Rehabil 89(3):522–530

    Article  PubMed  Google Scholar 

  • Uhlig Y, Weber BR, Grob D, Muntener M (1995) Fiber composition and fiber transformations in neck muscles of patients with dysfunction of the cervical spine. J Orthop Res 13:240–249

    Article  PubMed  CAS  Google Scholar 

  • Vasavada AN, Li S, Delp SL (1998) Influence of muscle morphology and moment arms on moment-geneating capacity of human neck muscles. Spine 23(4):412–422

    Article  PubMed  CAS  Google Scholar 

  • Vidal P, Roucoux A, Berthoz A (1982) Horizontal eye position-related activity in neck muscles of the alert cat. Exp Brain Res 46:448–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PH was supported by a Senior Principal Research Fellowship from the National Health and Medical Research Council (NHMRC) of Australia. We thank Rebecca Mellor for assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Hodges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bexander, C.S.M., Hodges, P.W. Cervico-ocular coordination during neck rotation is distorted in people with whiplash-associated disorders. Exp Brain Res 217, 67–77 (2012). https://doi.org/10.1007/s00221-011-2973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2973-8

Keywords

Navigation