Skip to main content
Log in

Environmental experience within and across testing days determines the strength of human visuomotor adaptation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The use of vision allows us to guide and modify our movements by appropriately transforming external sensory information into proper motor commands. We investigated how people learned visuomotor transformations in different visual feedback environments. These environments presented perturbations of visual sense of movement direction. Across experiments and testing days, we altered the likelihood of visual perturbation occurrence and the distribution of sign and strength of visual perturbation angles. We then observed how transformation of sensed error into incremental adaptation depended on visual perturbation angle and on environmental experience. We found that environmental context affected adaptive responses within a day and across days. The across-day effect was profound enough that people exhibited very weak or very strong adaptive sensitivity to identical stimuli, dependent solely on prior days’ experience. We conclude that trial-by-trial adaptation to visual feedback is not fixed, but dependent on environmental experiences on both short and long time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baddeley RJ, Ingram HA, Miall RC (2003) System identification applied to a visuomotor task: near-optimal human performance in a noisy changing task. J Neurosci 23:3066–3075

    PubMed  CAS  Google Scholar 

  • Burge J, Ernst MO, Banks MS (2008) The statistical determinants of adaptation rate in human reaching. J Vis 8:1–19

    Article  PubMed  Google Scholar 

  • Caithness G, Osu R, Bays P, Chase H, Klassen J, Kawato M, Wolpert DM, Flanagan JR (2004) Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J Neurosci 24:8662–8671

    Article  PubMed  CAS  Google Scholar 

  • Cunningham HA (1989) Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. J Exp Psychol Hum Percept Perform 15:493–506

    Article  PubMed  CAS  Google Scholar 

  • Donchin O, Sawaki L, Madupu G, Cohen LG, Shadmehr R (2002) Mechanisms influencing acquisition and recall of motor memories. J Neurophysiol 88:2114–2123

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Ruiz J, Diaz R (1999) Prism adaptation and aftereffect: specifying the properties of a procedural memory system. Learn Mem 6:47–53

    PubMed  CAS  Google Scholar 

  • Fine MS, Thoroughman KA (2006) Motor adaptation to single force pulses: sensitive to direction but insensitive to within-movement pulse placement and magnitude. J Neurophysiol 96:710–720

    Article  PubMed  Google Scholar 

  • Fine MS, Thoroughman KA (2007) Trial-by-trial transformation of error into sensorimotor adaptation changes with environmental dynamics. J Neurophysiol 98:1392–1404

    Article  PubMed  Google Scholar 

  • Fiorentini A, Ghez C, Maffei L (1972) Physiological correlates of adaptation to a rotated visual field. J Physiol 227:313–322

    PubMed  CAS  Google Scholar 

  • Hamilton CR, Bossom J (1964) Decay of prism aftereffects. J Exp Psychol 67:148–150

    Article  PubMed  CAS  Google Scholar 

  • Held R, Hein R (1958) Adaptation of disarranged hand-eye coordination contingent upon re-afferent stimulation. Percept Mot Skills 8:87–90

    Google Scholar 

  • Huys QJ, Dayan P (2009) A Bayesian formulation of behavioral control. Cognition 113:314–328

    Article  PubMed  Google Scholar 

  • Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2:S266–S278

    Article  PubMed  Google Scholar 

  • Joiner WM, Smith MA (2008) Long-term retention explained by a model of short-term learning in the adaptive control of reaching. J Neurophysiol 100:2948–2955

    Article  PubMed  Google Scholar 

  • Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with sudden visuo-motor distortions. Exp Brain Res 115:557–561

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91:924–933

    Article  PubMed  Google Scholar 

  • Malfait N, Ostry DJ (2004) Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? J Neurosci 24:8084–8089

    Article  PubMed  CAS  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119(Pt 4):1199–1211

    Article  PubMed  Google Scholar 

  • Michel C, Pisella L, Prablanc C, Rode G, Rossetti Y (2007) Enhancing visuomotor adaptation by reducing error signals: single-step (aware) versus multiple-step (unaware) exposure to wedge prisms. J Cognit Neurosci 19:341–350

    Article  Google Scholar 

  • Pine ZM, Krakauer JW, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. Neuroreport 7:2357–2361

    Article  PubMed  CAS  Google Scholar 

  • Saijo N, Gomi H (2010) Multiple motor learning strategies in visuomotor rotation. PLoS One 5:e9399

    Article  PubMed  Google Scholar 

  • Sarlegna FR, Sainburg RL (2009) The roles of vision and proprioception in the planning of reaching movements. Adv Exp Med Biol 629:317–335

    Article  PubMed  Google Scholar 

  • Scheidt RA, Dingwell JB, Mussa-Ivaldi FA (2001) Learning to move amid uncertainty. J Neurophysiol 86:971–985

    PubMed  CAS  Google Scholar 

  • Seidler RD (2006) Differential effects of age on sequence learning and sensorimotor adaptation. Brain Res Bull 70:337–346

    Article  PubMed  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    Article  PubMed  Google Scholar 

  • Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J Neurosci 23:6982–6992

    PubMed  CAS  Google Scholar 

  • Taylor JA, Ivry RB (2011) Flexible cognitive strategies during motor learning. PLoS Comput Biol 7:e1001096

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Taylor JA (2005) Rapid reshaping of human motor generalization. J Neurosci 25:8948–8953

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Fine MS, Taylor JA (2007) Trial-by-trial motor adaptation: a window into elemental neural computation. Prog Brain Res 165:373–382

    Article  PubMed  Google Scholar 

  • Tong C, Flanagan JR (2003) Task-specific internal models for kinematic transformations. J Neurophysiol 90:578–585

    Article  PubMed  Google Scholar 

  • Valero-Cuevas FJ (2005) An integrative approach to the biomechanical function and neuromuscular control of the fingers. J Biomech 38:673–684

    Article  PubMed  Google Scholar 

  • Wei K, Kording K (2009) Relevance of error: what drives motor adaptation? J Neurophysiol 101:655–664

    Article  PubMed  Google Scholar 

  • Zarahn E, Weston GD, Liang J, Mazzoni P, Krakauer JW (2008) Explaining savings for visuomotor adaptation: linear time-invariant state-space models are not sufficient. J Neurophysiol 100:2537–2548

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH NS057813 and NSF IGERT training award supporting J. A. Semrau (0548890). We thank M. S Fine, P. A. Wanda, J. A. Taylor, and J. R. Brooks for insightful comments and feedback; and D. N. Tomov for technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Thoroughman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semrau, J.A., Daitch, A.L. & Thoroughman, K.A. Environmental experience within and across testing days determines the strength of human visuomotor adaptation. Exp Brain Res 216, 409–418 (2012). https://doi.org/10.1007/s00221-011-2945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2945-z

Keywords

Navigation