Skip to main content
Log in

Visual signals bias auditory targets in azimuth and depth

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the psychophysical phenomenon visual bias, an accurately localized irrelevant signal, such as a light, impairs localization of a spatially discrepant target, such as a sound, when the two stimuli are perceived as unified. Many studies have demonstrated visual bias in azimuth, but none have tested directly or found this effect in depth. The current study was able to produce over 90% bias in azimuth and somewhat less (83%) bias in depth. A maximum likelihood estimate can predict bias by the variance in the localization of each unimodal signal in each dimension in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agganis BT, Muday JA, Schirillo JA (2010) Visual biasing of auditory localization in azimuth and depth. Perceptual Motor Skills 111:872–892

    Article  Google Scholar 

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    PubMed  CAS  Google Scholar 

  • Anastasio T, Patton P, Belkacem-Boussaid K (2000) Using Bayes’ rule to model multisensory enhancement in the superior colliculus. Neural Comput 12:1165–1187

    Article  PubMed  CAS  Google Scholar 

  • Barutchu A, Danaher J, Crewther S, Innes-Brown H, Shivdasani M, Paolini A (2010) Audiovisual integration in noise by children and adults. J Exp Child Psychol 105:38–50

    Article  PubMed  Google Scholar 

  • Battaglia P, Jacobs R, Aslin R (2003) Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am 20(7):1391–1396

    Article  Google Scholar 

  • Bertelson P, Aschersleben G (1998) Automatic visual bias of perceived auditory location. Psychon Bull Rev 5:482–489

    Article  Google Scholar 

  • Bertelson P, Radeau M (1981) Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept Psychophys 29:578–584

    Article  PubMed  CAS  Google Scholar 

  • Bowen A (2009) Multisensory integration in azimuth and depth. Unpublished manuscript, Department of Psychology, Wake Forest University, Winston-Salem, North Carolina

  • Brungart D, Durlach N, Rabinowitz W (1999) Auditory localization of nearby sources. II. Localization of a broadband source. J Acoust Soc Am 106:1956–1968

    Article  PubMed  CAS  Google Scholar 

  • Brungart D, Rabinowitz W, Durlach N (2000) Evaluation of response methods for the localization of nearby objects. Percept Psychophys 62:48–65

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Banks M (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  PubMed  CAS  Google Scholar 

  • Gardner MB (1968) Proximity image effect in sound localization. J Acoust Soc Am 43:163

    Article  PubMed  CAS  Google Scholar 

  • Hairston W, Wallace M, Vaughan J, Stein B, Norris J, Schirillo J (2003) Visual localization ability influences cross-modal bias. J Cogn Neurosci 15(1):20–29

    Article  PubMed  CAS  Google Scholar 

  • Jacobs R (2008) Bayesian estimation. Retrieved March 1, 2010, from University of Rochester, Brain and Cognitive Sciences Computational Cognition Cheat Sheets Web site: http://www.bcs.rochester.edu/people/robbie/jacobslab/cheat_sheets.html

  • Mershon D, Bowers J (1979) Absolute and relative cues for the auditory perception of egocentric distance. Perception 8:311–322

    Article  PubMed  CAS  Google Scholar 

  • Mershon D, Desaulniers D, Amerson T, Kiefer S (1980) Visual capture in auditory distance perception: proximity image effect reconsidered. J Auditory Res 20:129–136

    CAS  Google Scholar 

  • Plenge G (1974) On the differences between localization and lateralization. J Acoust Soc Am 56:944–951

    Article  PubMed  CAS  Google Scholar 

  • Savioja L, Huopaniemi J, Lokki T, Väänänen R (1990) Creating interactive virtual acoustic environments. J Audio Eng Soc 47(9):675–705

    Google Scholar 

  • Schiffman H (2000) Sensation & perception, 5th edn. Wiley, New York, NY

    Google Scholar 

  • Stein B, Meredith A (1993) The merging of the senses. MIT Press, Cambridge, MA

    Google Scholar 

  • Vesa S, Lokki T (2006) Detection of room reflections. In: Proceedings of the 9th international conference on digital audio effects (DAFx-06), Montreal, Canada

  • Viguier A, Clement G, Trotter Y (2001) Distance perception within near visual space. Perception 30:115–124

    Article  PubMed  CAS  Google Scholar 

  • Wallace M, Roberson G, Hairston W, Stein B, Vaughan J, Schirillo J (2004) Unifying multisensory signals across time and space. Exp Brain Res 158:252–258

    Article  PubMed  CAS  Google Scholar 

  • Warren D (1979) Spatial localization under conflict conditions: is there a single explanation? Perception 8:323–337

    Article  PubMed  CAS  Google Scholar 

  • Warren D, Welch R, McCarthy T (1981) The role of visual-auditory “compellingness” in the ventriloquism effect: implications for transitivity among the spatial senses. Percept Psychophys 30(5):557–564

    Article  PubMed  CAS  Google Scholar 

  • Wightman F, Kistler D (1989a) Headphone simulation of free-field listening. I: Stimulus synthesis. J Acoust Soc Am 85(2):858–867

    Article  PubMed  CAS  Google Scholar 

  • Wightman F, Kistler D (1989b) Headphone simulation of free-field listening. II: Psychophysical validation. J Acoust Soc Am 85(2):868–878

    Article  PubMed  CAS  Google Scholar 

  • Witten I, Knudsen E (2005) Why seeing is believing: merging auditory and visual worlds. Neuron 48:489–496

    Article  PubMed  CAS  Google Scholar 

  • Zahorik P (2001) Estimating sound source distance with and without vision. Optom Vision Sci 78:270–275

    Article  CAS  Google Scholar 

  • Zahorik P (2002) Assessing auditory distance perception using virtual acoustics. J Acoust Soc Am 111:1832–1846

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We especially thank Andrew Hoyord (Tucker-Davis Technologies) for programming assistance and Dale Dagenbach and Wayne Pratt for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Schirillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, A.L., Ramachandran, R., Muday, J.A. et al. Visual signals bias auditory targets in azimuth and depth. Exp Brain Res 214, 403–414 (2011). https://doi.org/10.1007/s00221-011-2838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2838-1

Keywords

Navigation