Skip to main content
Log in

A computational study of multisensory maturation in the superior colliculus (SC)

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Multisensory neurons in cat SC exhibit significant postnatal maturation. The first multisensory neurons to appear have large receptive fields (RFs) and cannot integrate information across sensory modalities. During the first several months of postnatal life RFs contract, responses become more robust and neurons develop the capacity for multisensory integration. Recent data suggest that these changes depend on both sensory experience and active inputs from association cortex. Here, we extend a computational model we developed (Cuppini et al. in Front Integr Neurosci 22: 4–6, 2010) using a limited set of biologically realistic assumptions to describe how this maturational process might take place. The model assumes that during early life, cortical-SC synapses are present but not active and that responses are driven by non-cortical inputs with very large RFs. Sensory experience is modeled by a “training phase” in which the network is repeatedly exposed to modality-specific and cross-modal stimuli at different locations. Cortical-SC synaptic weights are modified during this period as a result of Hebbian rules of potentiation and depression. The result is that RFs are reduced in size and neurons become capable of responding in adult-like fashion to modality-specific and cross-modal stimuli. Supported by NIH grants NS036916 and EY016716.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarado JC, Stanford TR, Rowland BA, Vaughan JW, Stein BE (2009) Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs. J Neurosci 29:6580–6592

    Article  PubMed  CAS  Google Scholar 

  • Cuppini C, Ursino M, Magosso E, Rowland BA, Stein BE (2010) An emergent model of multisensory integration in superior colliculus neurons. Front Integr Neurosci 22:4–6. doi:10.3389/fnint.2010.00006

    Google Scholar 

  • Fuentes-Santamaria V, McHaffie JG, Stein BE (2008) Maturation of multisensory integration in the superior colliculus: expression of nitric oxide synthase and neurofilament SMI-32. Brain Res 1242:13–23

    Article  Google Scholar 

  • Fuentes-Santamaria V, Alvarado JC, McHaffie JG, Stein BE (2009) Axon morphologies and convergence patterns of projections from different sensory-specific cortices of the anterior ectosylvian sulcus onto multisensory neurons in the cat superior colliculus. Cereb Cortex 19:2902–2915

    Article  PubMed  Google Scholar 

  • Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85:506–522

    PubMed  CAS  Google Scholar 

  • Jiang W, Jiang H, Stein BE (2006) Neonatal cortical ablation disrupts multisensory development in superior colliculus. J Neurophysiol 95:1380–1396

    Article  PubMed  Google Scholar 

  • Kadunce DC, Vaughan JW, Wallace MT, Benedek G, Stein BE (1997) Mechanisms of within- and cross-modality suppression in the superior colliculus. J Neurophysiol 78:2834–2847

    PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332:73–76. doi:10.1038/332073a0

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253:85–87. doi:10.1126/science.2063209

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1998) Biophysics of computation: Information Processing in Single Neurons. Oxford University Press, New York

    Google Scholar 

  • Luksch H, Gauger B, Wagner H (2000) A candidate pathway for a visual instructional signal to the barn owl’s auditory system. J Neurosci 20(RC70):1–4

    Google Scholar 

  • Meredith MA, Stein BE (1986) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365:350–354

    Article  PubMed  CAS  Google Scholar 

  • Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus. J Neurophysiol 75:1843–1857

    PubMed  CAS  Google Scholar 

  • Mize RR (1992) The organization of GABAergic neurons in the mammalian superior colliculus. Prog Brain Res 90:219–248. doi:10.1016/S0079-6123(08)63616-X

    Article  PubMed  CAS  Google Scholar 

  • Perrault TJ Jr, Vaughan JW, Stein BE, Wallace MT (2005) Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. J Neurophysiol 93:2575–2586

    Article  PubMed  Google Scholar 

  • Stanford TR, Quessy S, Stein BE (2005) Evaluating the operations underlying multisensory integration in the cat superior colliculus. J Neurosci 25:6499–6508

    Article  PubMed  CAS  Google Scholar 

  • Stein BE (2005) The development of a dialogue between cortex and midbrain to integrate multisensory information. Exp Brain Res 166:305–315

    Article  PubMed  Google Scholar 

  • Stein BE, Meredith MA (1993) The Merging of the Senses. MIT Press, Cambridge, MA

    Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–266

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Labos E, Kruger L (1973) Sequence of changes in properties of neurons of superior colliculus of the kitten during maturation. J Neurophysiol 36:667–679

    PubMed  CAS  Google Scholar 

  • Stein BE, Stanford TR, Rowland BA (2009) The neural basis of multisensory integration in the midbrain: its organization and maturation. Hear Res 258:4–15

    Article  PubMed  Google Scholar 

  • Stein BE, Burr D, Constantinidis C, Laurienti PJ, Alex Meredith M, Perrault TJ Jr, Ramachandran R, Röder B, Rowland BA, Sathian K, Schroeder CE, Shams L, Stanford TR, Wallace MT, Yu L, Lewkowicz DJ (2010) Semantic confusion regarding the development of multisensory integration: a practical solution. Eur J Neurosci 31:1713–1720

    Article  PubMed  Google Scholar 

  • Wallace MT, Stein BE (1994) Cross-modal synthesis in the midbrain depends on input from cortex. J Neurophysiol 71:429–432

    PubMed  CAS  Google Scholar 

  • Wallace MT, Stein BE (1997) Development of multisensory neurons and multisensory integration in cat superior colliculus. J Neurosci 17:2429–2444

    PubMed  CAS  Google Scholar 

  • Wallace MT, Stein BE (2007) Early experience determines how the senses will interact. J Neurophysiol 97:921–926

    Article  PubMed  Google Scholar 

  • Wallace MT, Perrault TJ Jr, Hairston WD, Stein BE (2004) Visual experience is necessary for the development of multisensory integration. J Neurosci 24:9580–9584

    Article  PubMed  CAS  Google Scholar 

  • Witten IB, Knudsen EI, Sompolinsky H (2008) A Hebbian learning rule mediates asymmetric plasticity in aligning sensory representations. J Neurophysiol 100:1067–1079. doi:10.1152/jn.00013.2008

    Article  PubMed  Google Scholar 

  • Zhang LI, Tao HW, Poo M (2000) Visual input induces long-term potentiation of developing retinotectal synapses. Nat Neurosci 3:708–715

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Cuppini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 294 kb)

Supplementary material 1 (EPS 3907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuppini, C., Stein, B.E., Rowland, B.A. et al. A computational study of multisensory maturation in the superior colliculus (SC). Exp Brain Res 213, 341–349 (2011). https://doi.org/10.1007/s00221-011-2714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2714-z

Keywords

Navigation