Skip to main content
Log in

Differential regulation of axon outgrowth and reinnervation by neurotrophin-3 and neurotrophin-4 in the hippocampal formation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the hypothesis whether neurotrophins have a differential influence on neurite growth from the entorhinal cortex depending on the presence or absence of hippocampal target tissue. We investigated organotypic brain slices derived from the entorhinal-hippocampal system to analyze the effects of endogenous and recombinant neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) on neurite outgrowth and reinnervation. In the reinnervation assay, entorhinal cortex explants of transgenic mice expressing enhanced green fluorescent protein (EGFP) were co-cultured with wild-type hippocampi under the influence of recombinant NT-3 and NT-4 (500 ng/ml). Both recombinant NT-3 and NT-4 significantly increased the growth of EGFP+ nerve fibers into the target tissue. Consistently, reinnervation of the hippocampi of NT-4−/− and NT-3+/−NT-4−/− mice was substantially reduced. In contrast, the outgrowth assay did not exhibit reduction in axon outgrowth of NT-4−/− or NT-3+/−NT-4−/− cortex explants, while the application of recombinant NT-3 (500 ng/ml) induced a significant increase in the neurite extension of cortex explants. Recombinant NT-4 had no effect. In summary, only recombinant NT-3 stimulates axon outgrowth from cortex explants, while both endogenous and recombinant NT-3 and NT-4 synergistically promote reinnervation of the denervated hippocampus. These results suggest that endogenous and exogenous NT-3 and NT-4 differentially influence neurite growth depending on the presence or absence of target tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alto LT, Havton LA, Conner JM, Hollis Ii ER, Blesch A, Tuszynski MH (2009) Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Blesch A, Yang H, Weidner N, Hoang A, Otero D (2004) Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci 27:190–201

    Article  CAS  PubMed  Google Scholar 

  • Campenot RB (1994) NGF and the local control of nerve terminal growth. J Neurobiol 25:599–611

    Article  CAS  PubMed  Google Scholar 

  • Clusmann H, Nitsch R, Heinemann U (1994) Long lasting functional alterations in the rat dentate gyrus following entorhinal cortex lesion: a current source density analysis. Neuroscience 61:805–815

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Bray GM, Aguayo AJ (1994) Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. J Neurobiol 25:953–959

    Article  CAS  PubMed  Google Scholar 

  • English AW, Meador W, Carrasco DI (2005) Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. Eur J Neurosci 21:2624–2634

    Article  PubMed  Google Scholar 

  • Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512

    Article  CAS  PubMed  Google Scholar 

  • Fryer RH, Kaplan DR, Kromer LF (1997) Truncated trkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro. Exp Neurol 148:616–627

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JL (2003) How does an axon grow? Genes Dev 17:941–958

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GT, Barres BA (2002) Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33:689–702

    Article  CAS  PubMed  Google Scholar 

  • Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572

    CAS  PubMed  Google Scholar 

  • Hechler D, Nitsch R, Hendrix S (2006) Green-fluorescent-protein-expressing mice as models for the study of axonal growth and regeneration in vitro. Brain Res Rev 52(1):160–169

    Google Scholar 

  • Holtje M, Djalali S, Hofmann F, Munster-Wandowski A, Hendrix S, Boato F, Dreger SC, Grosse G, Henneberger C, Grantyn R, Just I, Ahnert-Hilger G (2009) A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. Faseb J 23:1115–1126

    Article  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  • Jerregard H, Akerud P, Arenas E, Hildebrand C (2000) Fibroblast-like cells from rat plantar skin and neurotrophin-transfected 3T3 fibroblasts influence neurite growth from rat sensory neurons in vitro. J Neurocytol 29:653–663

    Article  CAS  PubMed  Google Scholar 

  • Koizumi S, Contreras ML, Matsuda Y, Hama T, Lazarovici P, Guroff G (1988) K-252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J Neurosci 8:715–721

    CAS  PubMed  Google Scholar 

  • Liu X, Ernfors P, Wu H, Jaenisch R (1995) Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375:238–241

    Article  CAS  PubMed  Google Scholar 

  • Nye SH, Squinto SP, Glass DJ, Stitt TN, Hantzopoulos P, Macchi MJ, Lindsay NS, Ip NY, Yancopoulos GD (1992) K-252a and staurosporine selectively block autophosphorylation of neurotrophin receptors and neurotrophin-mediated responses. Mol Biol Cell 3:677–686

    CAS  PubMed  Google Scholar 

  • Ohmichi M, Decker SJ, Pang L, Saltiel AR (1992) Inhibition of the cellular actions of nerve growth factor by staurosporine and K252A results from the attenuation of the activity of the trk tyrosine kinase. Biochemistry 31:4034–4039

    Article  CAS  PubMed  Google Scholar 

  • Prang P, Del Turco D, Kapfhammer JP (2001) Regeneration of entorhinal fibers in mouse slice cultures is age dependent and can be stimulated by NT-4, GDNF, and modulators of G-proteins and protein kinase C. Exp Neurol 169:135–147

    Article  CAS  PubMed  Google Scholar 

  • Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    Article  CAS  PubMed  Google Scholar 

  • Steup A, Lohrum M, Hamscho N, Savaskan NE, Ninnemann O, Nitsch R, Fujisawa H, Puschel AW, Skutella T (2000) Sema3C and netrin-1 differentially affect axon growth in the hippocampal formation. Mol Cell Neurosci 15:141–155

    Article  CAS  PubMed  Google Scholar 

  • Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M (2003) Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 184:97–113

    Article  CAS  PubMed  Google Scholar 

  • Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4:29–37

    Article  CAS  PubMed  Google Scholar 

  • Ullrich O, Diestel A, Eyupoglu IY, Nitsch R (2001) Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nat Cell Biol 3:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Ulupinar E, Jacquin MF, Erzurumlu RS (2000) Differential effects of NGF and NT-3 on embryonic trigeminal axon growth patterns. J Comp Neurol 425:202–218

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Sun TS, Ren JX, Wang XZ (2008) Ex vivo non-viral vector-mediated neurotrophin-3 gene transfer to olfactory ensheathing glia: effects on axonal regeneration and functional recovery after implantation in rats with spinal cord injury. Neurosci Bull 24:57–65

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants of the Deutsche Forschungsgemeinschaft to DH (GRK1258) and SH (SPP1394), by a grants from the Berlin-Brandenburg Center for Regenerative Therapies to SH and RN, and by the Investitionsbank Berlin to SH. The authors thank Ari Liebkowsky for editing the manuscript and Sabine Lewandowski for excellent help with the digital image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hendrix.

Additional information

The authors D. Hechler and F. Boato contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hechler, D., Boato, F., Nitsch, R. et al. Differential regulation of axon outgrowth and reinnervation by neurotrophin-3 and neurotrophin-4 in the hippocampal formation. Exp Brain Res 205, 215–221 (2010). https://doi.org/10.1007/s00221-010-2355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2355-7

Keywords

Navigation