Skip to main content
Log in

Saliency modulates global perception in simultanagnosia

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Patients with parieto-occipital brain damage may show simultanagnosia, a selective impairment in the simultaneous perception and integration of multiple objects (global perception) with normal recognition of individual objects. Recent findings in patients with simultanagnosia indicate improved global perception at smaller spatial distances between local elements of hierarchical organized complex visual arrays. Global perception thus does not appear to be an all-or-nothing phenomenon but can be modified by the spatial relationship between local elements. The present study aimed to define characteristics of a general principle that accounts for improved global perception of hierarchically organized complex visual arrays in patients with simultanagnosia with respect to the spatial properties of local elements. In detail, we investigated the role of the number and size of the local elements as well as their relationship with each other for the global perception. The findings indicate that global perception increases independently of the size of the global object and depends on the spatial relationship between the local elements and the global object. The results further argue against the possibility of a restriction in the attended or perceived area in simultanagnosia, in the sense that the integration of local elements into a global scene is impaired if a certain spatial “field of view” is exceeded. A possible explanation for these observations might be a shift from global to local saliency in simultanagnosia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balint R (1909) Seelenlähmung des Schauens, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25:51–181

    Article  Google Scholar 

  • Ben-Av MB, Sagi D (1995) Perceptual grouping by similarity and proximity: experimental results can be predicted by intensity autocorrelations. Vision Res 35:853–866

    Article  CAS  PubMed  Google Scholar 

  • Bhatt R, Carpenter GA et al (2007) Texture segregation by visual cortex: perceptual grouping, attention, and learning. Vision Res 47:3173–3211

    Article  PubMed  Google Scholar 

  • Bichot NP, Schall JD (1999) Effects of similarity and history on neural mechanisms of visual selection. Nat Neurosci 2:549–554

    Article  CAS  PubMed  Google Scholar 

  • Binet A, Simon T (1905) Methodes nouvelles pour le diagnostic du niveau intellectual des anormaux. Annee Psychol 11:191–337

    Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349

    Article  CAS  PubMed  Google Scholar 

  • Constantinidis C, Steinmetz MA (2005) Posterior parietal cortex automatically encodes the location of salient stimuli. J Neurosci 25:233–238

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM et al (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226

    CAS  PubMed  Google Scholar 

  • Coslett HB, Saffran E (1991) Simultanagnosia. To see but not two see. Brain 114:1523–1545

    Article  PubMed  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435

    CAS  PubMed  Google Scholar 

  • Dalrymple KA, Buschof WF, Cameron D, Barton JJ, Kingstone A (2010) Simulating simultanagnosia: spatially constricted vision mimics local capture and the global processing deficit. Exp Brain Res 202:445–455

    Article  PubMed  Google Scholar 

  • Demeyere N, Humphreys GW (2007) Distributed and focused attention: neuropsychological evidence for separate attentional mechanisms when counting and estimating. J Exp Psychol Hum Percept Perform 33: 1076–1088

    Google Scholar 

  • de-Wit LH, Kentridge RW et al (2008) Object-based attention and visual area LO. Neuropsychologia 47:1483–1490

    Article  PubMed  Google Scholar 

  • Di Russo F, Martinez A et al (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13:486–499

    Article  PubMed  Google Scholar 

  • Duncan J (1984) Perceptual selection based on alphanumeric class: evidence from partial reports. Percept Psychophys 33:533–547

    Google Scholar 

  • Field DJ, Hayes A et al (1993) Contour integration by the human visual system: evidence for a local association field. Vision Res 33:173–193

    Article  CAS  PubMed  Google Scholar 

  • Fox GB, Fan L et al (1998) Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. J Neurotrauma 15:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Friedman-Hill SR, Robertson LC et al (1995) Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269:853–855

    Article  CAS  PubMed  Google Scholar 

  • Goldberg ME, Segraves MA (1987) Visuospatial and motor attention in the monkey. Neuropsychologia 25:107–118

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb JP, Kusunoki M et al (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484

    Article  CAS  PubMed  Google Scholar 

  • Han S (2004) Interactions between proximity and similarity grouping: an event-related brain potential study in humans. Neurosci Lett 367:40–43

    Article  CAS  PubMed  Google Scholar 

  • Han S, Humphreys GW (1999) Interactions between perceptual organization based on Gestalt laws and those based on hierarchical processing. Percept Psychophys 61:1287–1298

    CAS  PubMed  Google Scholar 

  • Han S, Humphreys GW (2005) Perceptual organization at attended and unattended locations. Sci China C Life Sci 48:106–116

    PubMed  Google Scholar 

  • Han S, Humphreys GW et al (1999a) Parallel and competitive processes in hierarchical analysis: perceptual grouping and encoding of closure. J Exp Psychol Hum Percept Perform 25:1411–1432

    Article  CAS  PubMed  Google Scholar 

  • Han S, Humphreys GW et al (1999b) Uniform connectedness and classical Gestalt principles of perceptual grouping. Percept Psychophys 61:661–674

    CAS  PubMed  Google Scholar 

  • Han S, Jiang Y et al (2005a) Attentional modulation of perceptual grouping in human visual cortex: functional MRI studies. Hum Brain Mapp 25:424–432

    Article  PubMed  Google Scholar 

  • Han S, Jiang Y et al (2005b) Attentional modulation of perceptual grouping in human visual cortex: ERP studies. Hum Brain Mapp 26:199–209

    Article  PubMed  Google Scholar 

  • Huberle E, Karnath HO (2006) Global shape recognition is modulated by the spatial distance of local elements–evidence from simultanagnosia. Neuropsychologia 44:905–911

    Article  PubMed  Google Scholar 

  • Huberle E, Driver J, Karnath HO (2010) Retinal versus physical stimulus size as determinants of visual perception in simultanagnosia. Neuropsychologia 48:1677–1682

    Article  PubMed  Google Scholar 

  • Hughes H, Fendrich R et al (1990) Global versus local processing in the absence of low spatial frequencies. J Cogn Neurosci 2:272–282

    Article  Google Scholar 

  • Jensen PH, Sorensen ES et al (1995) Residues in the synuclein consensus motif of the alpha-synuclein fragment, NAC, participate in transglutaminase-catalysed cross-linking to Alzheimer-disease amyloid beta A4 peptide. Biochem J 310:91–94

    CAS  PubMed  Google Scholar 

  • Karnath HO, Ferber S et al (2000) The fate of global information in dorsal simultanagnosia. Neurocase 6:295–306

    Article  Google Scholar 

  • Kim MS, Cave KR (2001) Perceptual grouping via spatial selection in a focused-attention task. Vision Res 41:611–624

    Article  CAS  PubMed  Google Scholar 

  • Kimchi R, Palmer SE (1982) Form and texture in hierarchically constructed patterns. J Exp Psychol Hum Percept Perform 8:521–535

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    CAS  PubMed  Google Scholar 

  • Lamb M, Robertson L (1988) The processing of hierarchical stimuli: effects of retinal locus, locational uncertainty, and stimulus identity. Percept Psychophys 44:172–181

    CAS  PubMed  Google Scholar 

  • Lee TS, Yang CF et al (2002) Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nat Neurosci 5:589–597

    Article  CAS  PubMed  Google Scholar 

  • Li W, Gilbert CD (2002) Global contour saliency and local colinear interactions. J Neurophysiol 88:2846–2856

    Article  PubMed  Google Scholar 

  • Luria AR (1959) Disorders of simultaneous perception in a case of bilateral occipitoparietal brain injury. Brain 82:437–449

    Article  CAS  PubMed  Google Scholar 

  • McMains SA, Fehd HM et al (2007) Mechanisms of feature- and space-based attention: response modulation and baseline increases. J Neurophysiol 98:2110–2121

    Article  PubMed  Google Scholar 

  • Mevorach C, Humphreys GW et al (2006a) Effects of saliency, not global dominance, in patients with left parietal damage. Neuropsychologia 44:307–319

    Article  PubMed  Google Scholar 

  • Mevorach C, Humphreys GW, Shalev L (2006b) Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nat Neurosci 9:740–742

    Article  CAS  PubMed  Google Scholar 

  • Motter R, Vigo-Pelfrey C et al (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38:643–648

    Article  CAS  PubMed  Google Scholar 

  • Mozer M (1991) The perception of multiple objects. MIT Press, Cambridge

    Google Scholar 

  • Mozer M (1998) Computational modeling of spatial attention. Psychology Press, Erlbaum

    Google Scholar 

  • Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cognit Psychol 9:353–383

    Article  Google Scholar 

  • Olson CR (2001) Object-based vision and attention in primates. Curr Opin Neurobiol 11:171–179

    Article  CAS  PubMed  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    Article  CAS  PubMed  Google Scholar 

  • Rafal R (1997) Balint syndrome. Behavioral neurology and neuropsychology. In: Feinberg T, Farah M (ed) McGraw-Hill, New York

  • Riddoch MJ, Chachlacz M, Mevorach C, Mavritsaki E, Allen H, Humphreys GW (2010) The neural mechanisms of visual selection: the view from neuropsychology. Ann NY Acad Sci 1191:156–181

    Article  PubMed  Google Scholar 

  • Rizzo M, Hurtig R (1987) Looking but not seeing: attention, perception, and eye movements in simultanagnosia. Neurology 37:1642–1648

    CAS  PubMed  Google Scholar 

  • Rizzo M, Robin DA (1990) Simultanagnosia: a defect of sustained attention yields insights on visual information processing. Neurology 40:447–455

    CAS  PubMed  Google Scholar 

  • Roelfsema PR (2006) Cortical algorithms for perceptual grouping. Annu Rev Neurosci 29:203–227

    Article  CAS  PubMed  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259

    Article  CAS  PubMed  Google Scholar 

  • Shomstein S, Behrmann M (2008) Object-based attention: strength of object representation and attentional guidance. Percept Psychophys 70:132–144

    Article  PubMed  Google Scholar 

  • Shalev L, Mevorach C, Humphreys GW (2007) Local capture in Balint’s syndrome: effects of grouping and item familiarity. Cogn Neuropsychol 24:115–127

    Article  PubMed  Google Scholar 

  • Tang-Wai DF, Graff-Radford NR et al (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174

    CAS  PubMed  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136

    Article  CAS  PubMed  Google Scholar 

  • Von der Malsburg C (1995) Binding in models of perception and brain function. Curr Opin Neurobiol 5:520–526

    Article  Google Scholar 

  • Von der Malsburg C, Willshaw DJ (1981) Cooperativity and brain organization. Trends Neurosci 4:80–83

    Article  Google Scholar 

  • Wolpert I (1924) Die Simultanagnosie. Z. Gesamte. Neurol Psychiatr 93:397–415

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Bundesministerium für Bildung und Forschung (BMBF-Verbund 01GW0654 “Visuo-spatial cognition”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Huberle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huberle, E., Karnath, HO. Saliency modulates global perception in simultanagnosia. Exp Brain Res 204, 595–603 (2010). https://doi.org/10.1007/s00221-010-2328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2328-x

Keywords

Navigation