Skip to main content

Advertisement

Log in

Cognitive correlates of anti-saccade task performance

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The anti-saccade task (AST) is widely used in experimental, clinical, and neuroscience research as a pronounced test of executive functions. AST research includes to some extent also the investigation into its cognitive correlates. In the present study, we have examined cognitive correlates of the AST in the short-term/working memory, executive functions, and intelligence domains in healthy adults. We have obtained the following results. In line with previous research, the global percentage of direction errors PDE comprised of two only negligibly correlated components, direction errors with express or regular latencies. Substantial correlations with the other cognitive measures were obtained only for regular direction errors and, less so, for the global PDE. Results add to the evidence that distinguishes express and regular direction errors and underline that the complex requirements of the AST are reflected in a comparatively rich set of non-redundant parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baddeley AD (1998) The central executive: a concept and some misconceptions. J Int Neuropsychol Soc 4:523–526

    Article  CAS  PubMed  Google Scholar 

  • Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA et al (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 9:20–26

    Article  CAS  PubMed  Google Scholar 

  • Carroll JB (1993) Human cognitive abilities. Cambridge University Press, Cambridge

  • Claeys K, Crevits L, Stuyven E, Van der Goten K, Depuydt C, Vandierendonck A (1999) Parallel visual and memory processes. Doc Ophthalmol 95:349–358

    Article  CAS  Google Scholar 

  • Colom R, Abad FJ, Rebollo I, Shih PC (2005) Memory span and general intelligence: a latent-variable approach. Intelligence 33:623–642

    Article  Google Scholar 

  • Colom R, Abad FJ, Quiroga MA, Shih PC, Flores-Mendoza C (2008) Working memory and intelligence are highly related constructs, but why? Intelligence 36:584–606

    Google Scholar 

  • Cortina JM, Nouri H (2000) Effect size for ANOVA designs. Sage, Thousand Oaks

    Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374

    Article  Google Scholar 

  • Duncan J, Burgess P, Emslie H (1995) Fluid intelligence after frontal lobe lesions. Neuropsychologia 33:261–268

    Article  CAS  PubMed  Google Scholar 

  • Eenshuistra RM, Ridderinkhof KR, van der Molen MW (2004) Age-related changes in antisaccade task performance: inhibitory control or working-memory engagement? Brain Cogn 56:177–188

    PubMed  Google Scholar 

  • Evdokimidis I, Smyrnis N, Constantinidis C, Stefanis NC, Avramopoulos D, Paximadis C et al (2002) The antisaccade task in a sample of 2.006 young men: I. Normal population characteristics. Exp Brain Res 147:45–52

    Article  CAS  PubMed  Google Scholar 

  • Fischer B, Weber H (1993) Express saccades and visual attention. Behav Brain Res 16:553–610

    Article  Google Scholar 

  • Godefroy O, Cabaret M, Petit-Chenal V, Pruvo JP, Rousseaux M (1999) Control functions of the frontal lobes. Modularity of the central supervisory system? Cortex 35:1–20

    Article  CAS  PubMed  Google Scholar 

  • Gooding DC, Basso MA (2008) The tell-tale tasks: a review of the saccadic research in psychiatric patient populations. Brain Cogn 68:371–390

    Article  PubMed  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 18:1279–1296

    Article  CAS  PubMed  Google Scholar 

  • Heller KA, Kratzmeier H, Lengfelder A (1998) Standard progressive matrices/matrizen-test-manual (band 1). Beltz Test

  • Hutton SB (2008) Cognitive control of saccadic eye movements. Brain Cogn 68:327–340

    Article  CAS  PubMed  Google Scholar 

  • Jaeger AO, Suess HM, Beauducel A (1997) Berliner intelligenzstruktur-test. BIS-test, form 4. Hogrefe, Goettingen

    Google Scholar 

  • Jensen AR (1982) The chronometry of intelligence. In: Sternberg RJ (ed) Advances in the psychology of human intelligence, vol 1. Erlbaum, Hillsdale, NJ

  • Johnston K, Everling S (2008) Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn 68:271–283

    Article  PubMed  Google Scholar 

  • Jung RE, Haier RJ (2007) The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–187

    Article  PubMed  Google Scholar 

  • Klein C (2001) Developmental functions for parameters derived from pro- and anti-saccade tasks in 199 participants aged 6–28 years. Exp Brain Res 139:1–17

    CAS  PubMed  Google Scholar 

  • Klein C, Fischer B (2005) Developmental fractionation and differential discrimination of the anti-saccadic direction error. Exp Brain Res 165:132–138

    Article  PubMed  Google Scholar 

  • Klein C, Berg P, Rockstroh B, Andresen B (2000) Topography of the auditory P300 in Schizotypal personality. Biol Psychiatry 45:1612–1621

    Article  Google Scholar 

  • Kuntsi J, Oosterlaan J, Stevenson J (2001) Psychological mechanisms in hyperactivity: I. Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatry 42:199–210

    Article  CAS  PubMed  Google Scholar 

  • Kyllonen PC, Christal P (1990) Reasoning ability is (little more than) working memory capacity?!. Intelligence 14:389–433

    Article  Google Scholar 

  • Linden DEJ, Bittner RA, Muckli L, Waltz JA, Kriegeskorte N, Goebel R et al (2003) Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. NeuroImage 20:1518–1530

    Article  PubMed  Google Scholar 

  • Luna B, Velanova K, Geier CF (2008) Development of eye movement control. Brain Cogn 68:293–308

    Article  PubMed  Google Scholar 

  • Massen C (2004) Parallel programming of exegenous and endogenous components in the antisaccade task. Q J Exp Psychol 57:475–498

    Google Scholar 

  • McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68:255–270

    Article  PubMed  Google Scholar 

  • Müri RM, Nyffeler T (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades as revealed by lesion studies with neurological patients and transcranial magnetic stimulation (TMS). Brain Cogn 68:284–292

    Article  PubMed  Google Scholar 

  • Reuter B, Kathmann N (2004) Using saccade tasks as a tool to analyse executive dysfunctions in schizophrenia. Acta Psychol 115:255–269

    Article  Google Scholar 

  • Roberts RJ, Hager LD, Heron C (1994) Prefrontal cognitive processes: working memory and inhibition in the antisaccade task. J Exp Psychol Gen 123:374–393

    Article  Google Scholar 

  • Rogers RD, Monsell S (1995) Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124:207–231

    Article  Google Scholar 

  • Rommelse NNJ, Van der Stigchel S, Sergeant JA (2008) A review on eye movement studies in childhood and adolescent psychiatry. Brain Cogn 68:391–414

    Article  PubMed  Google Scholar 

  • Schweizer K (1995) Hypothesen zu den biologischen und kognitiven Grundlagen der allgemeinen Intelligenz. Z Differ Diagn Psychol 16(2):67–81

    Google Scholar 

  • Schweizer K (2005) An overview of research into the cognitive basis of intelligence. J Individ Differ 26:43–51

    Article  Google Scholar 

  • Shapiro KL (1998) Temporal methods for studying attention: how did we get here and where are we going? In: Shapiro K (ed) The limits of attention. Oxford University Press, Oxford, pp 1–19

    Google Scholar 

  • Smyrnis N (2008) Metric issues in the study of eye movements in psychiatry. Brain Cogn 68:341–358

    Article  PubMed  Google Scholar 

  • Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    Article  CAS  PubMed  Google Scholar 

  • Stuss D, Murphy KJ, Binns MA, Alexander MP (2003) Staying on the job: the frontal lobes control individual performance variability. Brain 126:2363–2380

    Article  PubMed  Google Scholar 

  • Stuyven E, Van der Goten K, Vandierendonck A, Claeys K, Crevits L (2000) The effect of cognitive load on saccadic eye movements. Acta Psychol 104:69–85

    Article  CAS  Google Scholar 

  • Tranel D, Anderson SW, Benton AL (1995) Development of the concept of executive function and its relationship to the frontal lobes. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 125–148

    Google Scholar 

  • Zimmermann P, Fimm B (1993) Testbatterie zur Aufmerksamkeitsprüfung (TAP) Version 1.0: Handbuch. Psytest

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, C., Rauh, R. & Biscaldi, M. Cognitive correlates of anti-saccade task performance. Exp Brain Res 203, 759–764 (2010). https://doi.org/10.1007/s00221-010-2276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2276-5

Keywords

Navigation