Skip to main content
Log in

Quantifying the importance of high frequency components on the amplitude of physiological tremor

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the importance of every frequency component on total physiological tremor (PT) amplitude. We suspect that since high frequencies of PT are of lower amplitude in displacement, removing them will have little to no impact on PT amplitude. PT of the index finger was measured with a laser displacement sensor while the finger was held horizontally. Amplitude of tremor was calculated in displacement, velocity and acceleration. PT amplitude was also calculated within five frequency bands. Although displacement amplitude of oscillations within the 7.5–12.5 and 16.5–30 Hz frequency bands represent 24 and 10% of total PT oscillation amplitude, respectively, their removal reduced PT amplitude by less than 3%. Conversely, the removal of the oscillations within 1–3.5 Hz band from the PT signal reduced the amplitude of the original PT signal by 56% in displacement. This suggests that when a task to be studied involves the measurement of a reduction in tremor, focus should be on the oscillations in the 1–3.5 Hz band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beuter A, Edwards R (1999) Using frequency domain characteristics to discriminate physiologic and parkinsonian tremors. J Clin Neurophysiol 16:484–494

    Article  CAS  PubMed  Google Scholar 

  • Beuter A, de Geoffroy A, Cordo P (1994) The measurement of tremor using simple laser systems. J Neurosci Methods 53:47–54

    Article  CAS  PubMed  Google Scholar 

  • Bilodeau M, Bisson E, Degrace D, Despres I, Johnson M (2009) Muscle activation characteristics associated with differences in physiological tremor amplitude between the dominant and non-dominant hand. J Electromyogr Kinesiol 19:131–138

    Article  PubMed  Google Scholar 

  • Birmingham AT, Wharrad HJ, Williams EJ (1985) The variation of finger tremor with age in man. J Neurol Neurosurg Psychiatry 48:788–798

    Article  CAS  PubMed  Google Scholar 

  • Burne JA, Lippold OC, Pryor M (1984) Proprioceptors and normal tremor. J Physiol 348:559–572

    CAS  PubMed  Google Scholar 

  • Carignan B, Daneault JF, Duval C (2009) The amplitude of physiological tremor can be voluntarily modulated. Exp Brain Res 194:309–316

    Article  PubMed  Google Scholar 

  • Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924

    CAS  PubMed  Google Scholar 

  • Duval C, Jones J (2005) Assessment of the amplitude of oscillations associated with high-frequency components of physiological tremor: impact of loading and signal differentiation. Exp Brain Res 163:261–266

    Article  PubMed  Google Scholar 

  • Duval C, Norton L (2006) Tremor in patients with migraine. Headache 46:1005–1010

    Article  PubMed  Google Scholar 

  • Duval C, Panisset M, Bertrand G, Sadikot AF (2000) Evidence that ventrolateral thalamotomy may eliminate the supraspinal component of both pathological and physiological tremors. Exp Brain Res 132:216–222

    Article  CAS  PubMed  Google Scholar 

  • Duval C, Panisset M, Sadikot AF (2001) The relationship between physiological tremor and the performance of rapid alternating movements in healthy elderly subjects. Exp Brain Res 139:412–418

    Article  CAS  PubMed  Google Scholar 

  • Duval C, Sadikot AF, Panisset M (2004) The detection of tremor during slow alternating movements performed by patients with early Parkinson’s disease. Exp Brain Res 154:395–398

    Article  PubMed  Google Scholar 

  • Duval C, Strafella AP, Sadikot AF (2005) The impact of ventrolateral thalamotomy on high-frequency components of tremor. Clin Neurophysiol 116:1391–1399

    Article  PubMed  Google Scholar 

  • Duval C, Panisset M, Strafella AP, Sadikot AF (2006a) The impact of ventrolateral thalamotomy on tremor and voluntary motor behavior in patients with Parkinson’s disease. Exp Brain Res 170:160–171

    Article  PubMed  Google Scholar 

  • Duval C, Sadikot AF, Panisset M (2006b) Bradykinesia in patients with essential tremor. Brain Res 1115:213–216

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Beuter A (2000) Using time domain characteristics to discriminate physiologic and parkinsonian tremors. J Clin Neurophysiol 17:87–100

    Article  CAS  PubMed  Google Scholar 

  • Elble RJ (1995) Mechanisms of physiological tremor and relationship to essential tremor. In: Findley LJ, Koller WC (eds) Handbook of tremor disorders. Dekker, New York, pp 51–62

    Google Scholar 

  • Elble RJ (1996) Central mechanisms of tremor. J Clin Neurophysiol 13:133–144

    Article  CAS  PubMed  Google Scholar 

  • Elble RJ (2003) Characteristics of physiologic tremor in young and elderly adults. Clin Neurophysiol 114:624–635

    Article  PubMed  Google Scholar 

  • Elble RJ, Randall JE (1978) Mechanistic components of normal hand tremor. Electroencephalogr Clin Neurophysiol 44:72–82

    Article  CAS  PubMed  Google Scholar 

  • Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1999) Load-independent contributions from motor-unit synchronization to human physiological tremor. J Neurophysiol 82:664–675

    CAS  PubMed  Google Scholar 

  • Harwell RC, Ferguson RL (1983) Physiologic tremor and microsurgery. Microsurgery 4:187–192

    Article  CAS  PubMed  Google Scholar 

  • Hollerbach JM (1981) An oscillation theory of handwriting Biol. Cybern. 39:139–156

    Article  Google Scholar 

  • Hunter IW, Doukoglou TD, Lafontaine SR, Charette PG, Jones LA, Sagar MA, Mallinson GD, Hunter PJ (1993) A teleoperated microsurgical robot and associated virtual environment for eye surgery. Presence 2:265–280

    Google Scholar 

  • Keogh J, Morrison S, Barrett R (2004) Augmented visual feedback increases finger tremor during postural pointing. Exp Brain Res 159:467–477

    Article  CAS  PubMed  Google Scholar 

  • Koster B, Lauk M, Timmer J, Winter T, Guschlbauer B, Glocker FX, Danek A, Deuschl G, Lucking CH (1998) Central mechanisms in human enhanced physiological tremor. Neurosci Lett 241:135–138

    Article  CAS  PubMed  Google Scholar 

  • Krapohl BD, Reichert B, Machens HG, Mailander P, Siemionow M, Zins JE (2001) Computer-guided microsurgery: surgical evaluation of a telerobotic arm. Microsurgery 21:22–29

    Article  CAS  PubMed  Google Scholar 

  • Lakie M, Walsh EG, Arblaster LA, Villagra F, Roberts RC (1994) Limb temperature and human tremors. J Neurol Neurosurg Psychiatry 57:35–42

    Article  CAS  PubMed  Google Scholar 

  • Lamarre Y (1975) Tremorgenic mechanisms in primates. Adv Neurol 10:23–34

    CAS  PubMed  Google Scholar 

  • Llinas R (1984) Rebound excitation as the physiological basis for tremor: a biophysical study of the oscillatory properties of mammalian central neurons in vitro. In: Findley LJ, Capildeo R (eds) Movement disorders: tremor. Macmillan, London

    Google Scholar 

  • Mann KA, Werner FW, Palmer AK (1989) Frequency spectrum analysis of wrist motion for activities of daily living. J Orthop Res 7:304–306

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD, Meadows JC, Lange GW, Watson RS (1969) The role of the ballistocardiac impulse in the genesis of physiological tremor. Brain 92:647–662

    Article  CAS  PubMed  Google Scholar 

  • McAuley JH, Rothwell JC, Marsden CD (1997) Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing. Exp Brain Res 114:525–541

    Article  CAS  PubMed  Google Scholar 

  • Morrison S, Newell KM (2000) Postural and resting tremor in the upper limb. Clin Neurophysiol 111:651–663

    Article  CAS  PubMed  Google Scholar 

  • Morrison S, Kavanagh J, Obst SJ, Irwin J, Haseler LJ (2005) The effects of unilateral muscle fatigue on bilateral physiological tremor. Exp Brain Res 167:609–621

    Article  CAS  PubMed  Google Scholar 

  • Norman KE, Edwards R, Beuter A (1999) The measurement of tremor using a velocity transducer: comparison to simultaneous recordings using transducers of displacement, acceleration and muscle activity. J Neurosci Methods 92:41–54

    Article  CAS  PubMed  Google Scholar 

  • Palep JH (2009) Robotic assisted minimally invasive surgery. J Minim Access Surg 5:1–7

    Article  PubMed  Google Scholar 

  • Raethjen J, Pawlas F, Lindemann M, Wenzelburger R, Deuschl G (2000) Determinants of physiologic tremor in a large normal population. Clin Neurophysiol 111:1825–1837

    Article  CAS  PubMed  Google Scholar 

  • Rassweiler J, Binder J, Frede T (2001) Robotic and telesurgery: will they change our future? Curr Opin Urol 11:309–320

    Article  CAS  PubMed  Google Scholar 

  • Riviere CN, Rader RS, Khosla PK (1997) Characteristics of hand motion of eye surgeons. In: 19th Annual Conference of the IEEE. Engineering in Medicine and Biology Society, Chicago

    Google Scholar 

  • Stephens JA, Taylor A (1974) The effect of visual feedback on physiological muscle tremor. Electroencephalogr Clin Neurophysiol 36:457–464

    Article  CAS  PubMed  Google Scholar 

  • Stiles RN, Randall JE (1967) Mechanical factors in human tremor frequency. J Appl Physiol 23:324–330

    CAS  PubMed  Google Scholar 

  • Sturman MM, Vaillancourt DE, Corcos DM (2005) Effects of aging on the regularity of physiological tremor. J Neurophysiol 93:3064–3074

    Article  PubMed  Google Scholar 

  • Takanokura M, Kokuzawa N, Sakamoto K (2002) The origins of physiological tremor as deduced from immersions of the finger in various liquids. Eur J Appl Physiol 88:29–41

    Article  PubMed  Google Scholar 

  • Takanokura M, Makabe H, Kaneko K, Mito K, Sakamoto K (2007) Coordination of the upper-limb segments in physiological tremor with various external loads. Med Sci Monit 13:CR379–CR385

    PubMed  Google Scholar 

  • Vaillancourt DE, Newell KM (2000) Amplitude changes in the 8–12, 20–25, and 40 Hz oscillations in finger tremor. Clin Neurophysiol 111:1792–1801

    Article  CAS  PubMed  Google Scholar 

  • van Buskirk C, Wolbarsht ML, Stecher K Jr (1966) The nonnervous causes of normal physiologic tremor. Neurology 16:217–220

    PubMed  Google Scholar 

  • Vasilakos K, Beuter A (1993) Effects of noise on a delayed visual feedback system. J Theor Biol 165:389–407

    Article  CAS  PubMed  Google Scholar 

  • Yap CB, Boshes B (1967) The frequency and pattern of normal tremor. Electroencephalogr Clin Neurophysiol 22:197–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of the present study wish to thank the subjects who participated in the study, Carole Roy and Danielle Beaudoin who helped in the data collection. This research was funded by Natural Science and Engineering Research Council of Canada through a Master’s scholarship (Carignan) and operating grant (Duval). Dr Duval is also supported by a Fonds de la Recherche en Santé du Québec salary grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Duval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carignan, B., Daneault, JF. & Duval, C. Quantifying the importance of high frequency components on the amplitude of physiological tremor. Exp Brain Res 202, 299–306 (2010). https://doi.org/10.1007/s00221-009-2132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-2132-7

Keywords

Navigation