Skip to main content
Log in

EEG coherence: topography and frequency structure

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Topographical patterns of bipolar EEG coherence are frequency specific, indicating the presence of diverse neuroanatomical and neurophysiological factors in EEG production. Bipolar EEG coherence values were calculated at 50 frequency bins ranging from 3 to 28 Hz for 39 coherence pairs. Data were derived from 4.25 min of resting EEG obtained from 106 healthy adult male subjects and analyzed in 0.5 Hz bins by Fourier transform methods. Frequency bands were clearly separated at 8.5 and 13 Hz, with a less distinct separations at 6 and 20 Hz. Within pair (non-topographic) and across pair (topographic), measures gave similar patterns of separation. Significant pathways were primarily anterior–posterior interhemispheric or perpendicular to the anterior–posterior axis. There was little difference between left and right for comparable pairs. Theta band coherent activity involves distinct midline and temporal sources, with temporal sources showing anterior/posterior differentiation. In contrast, alpha activity has a distinct posterior focus, while beta activity shows no clear global structure. A spatially homogeneous model based on characteristics of thalamocortical connectivity accounts for much of the data, but departures from the model indicate the contribution of other neural factors to coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Astolfi L, Cincotti F, Mattia D, De Vico Fallani F, Tocci A, Colosimo A, Salinari S, Marciani MG, Hesse W, Witte H, Ursino M, Zavaglia M, Babiloni F (2008) Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Trans Biomed Eng 55(3):902–913

    Article  PubMed  CAS  Google Scholar 

  • Babiloni F, Babiloni C, Fattorini L, Carducci F, Onorati P, Urbano A (1995) Performances of surface Laplacian estimators: a study of simulated and real scalp potential distributions. Brain Topogr 8(1):35–45

    Article  PubMed  CAS  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013

    Article  PubMed  Google Scholar 

  • Bendat J, Piersol A (1971) Random data: analysis and measurement procedures. Wiley, New York

    Google Scholar 

  • Breakspear M, Terry JR (2002) Topographic organization of nonlinear interdependence in multichannel human EEG. Neuroimage 16(3 Pt 1):822–835

    Article  PubMed  CAS  Google Scholar 

  • Breakspear M, Williams LM, Stam CJ (2004) A novel method for the topographic analysis of neural activity reveals formation and dissolution of ‘dynamic cell assemblies’. J Comput Neurosci 16(1):49–68

    Article  PubMed  Google Scholar 

  • Bruce A, Gao H (1994) S+ wavelets user’s manual. Mathsoft Inc., Seattle

    Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  PubMed  Google Scholar 

  • Cantero JL, Atienza M, Salas RM (2002) Human alpha oscillations in wakefulness, drowsiness period, and REM sleep: different electroencephalographic phenomena within the alpha band. Neurophysiol Clin 32(1):54–71

    Article  PubMed  Google Scholar 

  • Chorlian DB, Tang Y, Rangaswamy M, O’Connor S, Rohrbaugh J, Taylor R, Porjesz B (2007) Heritability of EEG coherence in a large sib-pair population. Biol Psychol 75(3):260–266

    Article  PubMed  Google Scholar 

  • Cover KS, Stam CJ, van Dijk BW (2004) Detection of very high correlation in the alpha band between temporal regions of the human brain using MEG. Neuroimage 22(4):1432–1437

    Article  PubMed  CAS  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20(3):1743–1755

    Article  PubMed  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367

    Article  PubMed  Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression, I. Biometrika 37:409–428

    PubMed  CAS  Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38 :159–179

    PubMed  CAS  Google Scholar 

  • Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93(5):2864–2872

    Article  PubMed  Google Scholar 

  • Feshchenko VA, Reinsel RA, Veselis RA (2001) Multiplicity of the alpha rhythm in normal humans. J Clin Neurophysiol 18(4):331–344

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56(1):171–184

    Article  PubMed  CAS  Google Scholar 

  • Fries P, (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    Article  PubMed  Google Scholar 

  • Gasser T, Sroka L, Mocks J (1985) The transfer of EOG activity into the EEG for eyes open and closed. Electroencephalogr Clin Neurophysiol 61: 181–193

    Article  PubMed  CAS  Google Scholar 

  • Gasser T, Sroka L, Mocks J (1986) The correction of EOG artifacts by frequency dependent and frequency independent methods. Psychophysiology 23:704–712

    Article  PubMed  CAS  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13(18):2487–2492

    Article  PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258

    Article  PubMed  CAS  Google Scholar 

  • Grieve PG, Emerson RG, Fifer WP, Isler JR, Stark RI (2003) Spatial correlation of the infant and adult electroencephalogram. Clin Neurophysiol 114(9):1594–1608

    Article  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159

    Article  PubMed  Google Scholar 

  • Hamming R (1983) Digital filters. Prentice, Englewood Cliffs

    Google Scholar 

  • Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bäuml KH Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 37(4):1465–1473

  • Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10240–10245

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Crunelli V (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11(4):357–372

    Article  PubMed  Google Scholar 

  • Hughes JR, John ER (1999) Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 11(2):190–208

    PubMed  CAS  Google Scholar 

  • Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85(2):145–157

    Article  PubMed  CAS  Google Scholar 

  • Karameh FN, Dahleh MA, Brown EN, Massaquoi SG (2006) Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena. Biol Cybern 95(4):289–310

    Article  PubMed  Google Scholar 

  • Koenig T, Studer D, Hubl D, Melie L, Strik WK (2005) Brain connectivity at different time-scales measured with EEG. Philos Trans R Soc Lond B Biol Sci 360(1457):1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage 19(4):1463–1476

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100(19):11053–11058

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A (2006) Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31(4):1408–1418

    Article  PubMed  CAS  Google Scholar 

  • Möller E, Schack B, Arnold M, Witte H (2001) Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. J Neurosci Methods 105(2):143–158

    Article  PubMed  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104(32):13170–13175

    Article  PubMed  CAS  Google Scholar 

  • Marple SL (1987) Digital spectral analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20(1):145–158

    Article  PubMed  Google Scholar 

  • Murias M, Swanson JM, Srinivasan R (2007) Functional connectivity of frontal cortex in healthy and ADHD children reflected in EEG coherence. Cereb Cortex 17(8):1788–1799

    Article  PubMed  Google Scholar 

  • Murias M, Webb SJ, Greenson J, Dawson G (2007) Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry 62(3):270–273

    Article  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Clin Neurophysiol 103:499–515

    Article  CAS  Google Scholar 

  • Nunez PL, Silberstein RB, Shi Z, Carpenter MR, Srinivasan R, Tucker DM, Doran SM, Cadusch PJ, Wijesinghe RS (1999) EEG coherency II: experimental comparisons of multiple measures. Clin Neurophysiol 110(3):469–486

    Article  PubMed  CAS  Google Scholar 

  • Nunez PL, Silberstein RB (2000) On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr 13(2):79–96

    Article  PubMed  CAS  Google Scholar 

  • Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435

    Article  PubMed  Google Scholar 

  • Nunez PL, Wingeier BM, Silberstein RB (2001) Spatial–temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13(3):125–164

    Article  PubMed  CAS  Google Scholar 

  • O’Connor SC, Robinson PA (2004) Spatially uniform and nonuniform analyses of electroencephalographic dynamics, with application to the topography of the alpha rhythm. Phys Rev E Stat Nonlin Soft Matter Phys70(1 Pt 1):011911

    PubMed  Google Scholar 

  • Porjesz B, Almasy L, Edenberg HJ, Wang K, Chorlian DB, Foroud T, Goate A, Rice JP, O’Connor SJ, Rohrbaugh J, Kuperman S, Bauer LO, Crowe RR, Schuckit MA, Hesselbrock V, Conneally PM, Tischfield JA, Li TK, Reich T, Begleiter H (2002) Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc Natl Acad Sci USA 99(6):3729–3733

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Gusnard DA (2005) Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 493(1):167–176

    Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090

    Google Scholar 

  • Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, Rohrbaugh J, O’Connor SJ, Kuperman S, Reich T, Begleiter H (2002) Beta power in the EEG of alcoholics. Biol Psychiatry 52(8):831–842

    Article  PubMed  Google Scholar 

  • Rangaswamy M, Porjesz B, Chorlian DB, Choi K, Jones KA, Wang K, Rohrbaugh J, O’Connor S, Kuperman S, Reich T, Begleiter H (2003) Theta power in the EEG of alcoholics. Alcohol Clin Exp Res 27(4):607–615

    PubMed  Google Scholar 

  • Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Kuperman S, Rohrbaugh J, O’Connor SJ, Bauer LO, Reich T, Begleiter H (2004) Resting EEG in offspring of male alcoholics: beta frequencies. Int J Psychophysiol 51(3):239–251

    Article  PubMed  Google Scholar 

  • Robinson PA (2003) Neurophysical theory of coherence and correlations of electroencephalographic and electrocorticographic signals. J Theor Biol 222(2):163–175

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Wright JJ, Gordon E, Whitehouse RW (2003) Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28(Suppl 1):S74–S79

    Article  PubMed  Google Scholar 

  • Robinson PA (2005) Propagator theory of brain dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 72(1 Pt 1):011904

    PubMed  CAS  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342

    Article  PubMed  Google Scholar 

  • Sarnthein J, Morel A, von Stein A, Jeanmonod D (2005) Thalamocortical theta coherence in neurological patients at rest and during a working memory task. Int J Psychophysiol 57(2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Sarnthein J, Jeanmonod D (2007) High thalamocortical theta coherence in patients with Parkinson’s disease. J Neurosci 27(1):124–131

    Article  PubMed  CAS  Google Scholar 

  • Schreckenberger M, Lange-Asschenfeldt C, Lochmann M, Mann K, Siessmeier T, Buchholz HG, Bartenstein P, Grunder G (2004) The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. Neuroimage 22(2):637–644

    Article  PubMed  Google Scholar 

  • Srinivasan R, Nunez PL, Silberstein RB (1998) Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans Biomed Eng 45(7):814–826

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan R (1999) Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children. Clin Neurophysiol 110(8):1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan R, Winter WR, Nunez PL (2006) Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res 159:29–42

    Article  PubMed  Google Scholar 

  • Srinivasan R, Winter WR, Ding J, Nunez PL (2007) EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods 166(1):41–52

    Article  PubMed  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW (2007) Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise. Phys Rev E Stat Nonlin Soft Matter Phys 76(1 Pt 1):011916

    PubMed  Google Scholar 

  • Strang G, Nguyen T (1996) Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  • Tang Y, Chorlian DB, Rangaswamy M, O’Connor S, Taylor R, Rohrbaugh J, Porjesz B, Begleiter H (2007) Heritability of bipolar EEG spectra in a large sib-pair population. Behav Genet 37(2):302–313

    Article  PubMed  Google Scholar 

  • Tang Y, Chorlian DB, Rangaswamy M, Porjesz B, Bauer L, Kuperman S, O’Connor S, Rohrbaugh J, Schuckit M, Stimus A, Begleiter H (2007) Genetic influences on bipolar EEG power spectra. Int J Psychophysiol 65(1):2–9

    Article  PubMed  Google Scholar 

  • Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500):2319–2323

    Article  PubMed  CAS  Google Scholar 

  • Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol 64(2):123–143

    Article  PubMed  CAS  Google Scholar 

  • van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22(3):165–178

    Article  PubMed  Google Scholar 

  • Ursino M, Zavaglia M (2007) Modeling analysis of the relationship between EEG rhythms and connectivity among different neural populations. J Integr Neurosci 6(4):597–623

    Article  PubMed  Google Scholar 

  • von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Intl J Psychophysiol 38:301–313

    Article  Google Scholar 

  • Wang K, Begleiter H (1999) Local polynomial estimate of surface Laplacian. Brain Topogr 12(1):19–29

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Tang MX (2004) Exact confidence interval for magnitude-squared coherence estimates. IEEE Signal Process Lett 11(3):326–329

    Article  Google Scholar 

  • Zavaglia M, Astolfi L, Babiloni F, Ursino M (2008) The effect of connectivity on EEG rhythms, power spectral density and coherence among coupled neural populations: analysis with a neural mass model. IEEE Trans Biomed Eng 55(1):69–77

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our present and former colleagues at the Henri Begleiter Neurodynamics Laboratory for their help in preparing this paper. We thank Jay Weedon for enlightening discussions of data analysis, as well as two anonymous reviewers whose comments and questions led to signficant improvements in this paper. We dedicate this paper to the memory of Henri Begleiter, who encouraged the first steps in its creation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Balin Chorlian.

Additional information

This work was supported by NIAAA Grants AA002686, AA005524, and AA008401 at SUNY Downstate Medical Center.

Appendix: location of coherence pairs

Appendix: location of coherence pairs

The table presents a classification of all pairs used in this study. Figures illustrating the scalp locations follow (see Tables 1, 2; Figs. 15, 16).

Table 1 Classification of coherence pairs
Table 2 Distance between coherence pairs
Fig. 15
figure 15

Left panel, fronto-central electrodes and sagittal bipolar derivations. Right panel, red lines connect midpoints of coherence pairs for all pairs calculations. Central–parietal is similar. Frontal and occipital pairs not illustrated

Fig. 16
figure 16

Left panel derivations and coherence pairs for lateral intrahemispheric and interhemispheric coherence pairs. Right panel derivations and coherence pairs for lateral midline and diagonal coherence pairs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chorlian, D.B., Rangaswamy, M. & Porjesz, B. EEG coherence: topography and frequency structure. Exp Brain Res 198, 59–83 (2009). https://doi.org/10.1007/s00221-009-1936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1936-9

Keywords

Navigation