Skip to main content
Log in

Stimulus duration influences perceived simultaneity in audiovisual temporal-order judgment

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The temporal integration of stimuli in different sensory modalities plays a crucial role in multisensory processing. Previous studies using temporal-order judgments to determine the point of subjective simultaneity (PSS) with multisensory stimulation yielded conflicting results on modality-specific delays. While it is known that the relative stimulus intensities of stimuli from different sensory modalities affect their perceived temporal order, we have hypothesized that some of these discrepancies might be explained by a previously overlooked confounding factor, namely the duration of the stimulus. We therefore studied the influence of both factors on the PSS in a spatial-audiovisual temporal-order task. In addition to confirming previous results on the role of stimulus intensity, we report that varying the temporal duration of an audiovisual stimulus pair also affects the perceived temporal order of the auditory and visual stimulus components. Although individual PSS values varied from negative to positive values across participants, we found a systematic shift of PSS values in all participants toward a common attractor value with increasing stimulus duration. This resulted in a stabilization of PSS values with increasing stimulus duration, indicative of a mechanism that compensates individual imbalances between sensory modalities, which might arise from attentional biases toward one modality at short stimulus durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Zampini et al. (2003a) found the PSS in the range of 60–80 ms versus other studies using central stimulation that found PSS in the range of 20–40 ms.

References

  • Alais D, Carlile S (2005) Synchronizing to real events: subjective audiovisual alignment scales with perceived auditory depth and speed of sound. Proc Natl Acad Sci USA 102:2244–2247

    Article  PubMed  CAS  Google Scholar 

  • Arden GB, Weale RA (1954) Variations of the latent period in vision. Proc R Soc Lond Series B Biol Sci 142:258–268

    Article  CAS  Google Scholar 

  • Behar I, Bevan W (1961) The perceived duration of auditory and visual intervals: cross-modal comparison and interaction. Am J Psychol 74:17–26

    Article  PubMed  CAS  Google Scholar 

  • Bertelson P, de Gelder B (2004) The psychology of multimodal perception. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 140–177

    Google Scholar 

  • Calvert GA, Stein BE, Spence C (eds) (2004) The handbook of multisensory processing. MIT Press, Cambridge

    Google Scholar 

  • Carrasco M, McElree B, Denisova K et al (2003) Speed of visual processing increases with eccentricity. Nat Neurosci 6:699–700

    Article  PubMed  CAS  Google Scholar 

  • Efron R (1970) Effect of stimulus duration on perceptual onset and offset latencies. Percept Psychophys 8:231–234

    Google Scholar 

  • Exner S (1875) Experimentelle Untersuchung der einfachsten psychischen Processe. III. Abhandlung. Der persönlichen Gleichung zweiter Theil [Experimental examination of the most simple psychological processes. III. Treatise Second part of the personal equation]. Pflüger’s Archiv für die gesammte Physiologie des Menschen und der Thiere 11:403–432

    Article  Google Scholar 

  • Frey RD (1990) Selective attention, event perception and the criterion of acceptability principle: Evidence supporting and rejecting the doctrine of prior entry. Hum Mov Sci 9:481–530

    Article  Google Scholar 

  • Fujisaki W, Shimojo S, Kashino M et al (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7:773–778

    Article  PubMed  CAS  Google Scholar 

  • Hanson JV, Heron J, Whitaker D (2008) Recalibration of perceived time across sensory modalities. Exp Brain Res 185:347–352

    Article  PubMed  Google Scholar 

  • Harrar V, Harris LR (2008) The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Exp Brain Res 70:807–817

    Google Scholar 

  • Heil P, Neubauer H (2003) A unifying basis of auditory thresholds based on temporal summation. Proc Natl Acad Sci USA 100:6151–6156 Erratum in: Proc Natl Acad Sci USA 101:3323

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Neubauer H, Brown M, Irvine DR (2008) Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers. Hear Res 238:25–38

    Article  PubMed  Google Scholar 

  • Hikosaka O, Miyauchi S, Shimojo S (1993) Focal visual attention produces illusory temporal order and motion sensation. Vis Res 33:1219–1240

    Article  PubMed  CAS  Google Scholar 

  • Jaśkowski P (1991) Perceived onset simultaneity of stimuli with unequal durations. Perception 20:715–726

    Article  PubMed  Google Scholar 

  • Jaśkowski P (1993) Selective attention and temporal-order judgment. Percept Psychophys 22:681–689

    Article  Google Scholar 

  • Jaśkowski P (1996) Simple reaction time and perception of temporal order: dissociations and hypotheses. Percept Mot Skills 82:707–730

    PubMed  Google Scholar 

  • Jaśkowski P, Verleger R (2000) Attentional bias toward low-intensity stimuli: an explanation for the intensity dissociation between reaction time and temporal-order judgment? Conscious Cognit 9:435–456

    Article  Google Scholar 

  • Jaśkowski P, Jaroszyk F, Hojan-Jezierska D (1990) Temporal-order judgments and reaction time for stimuli of different modalities. Psychol Res 52:35–38

    Article  PubMed  Google Scholar 

  • Johnston A, Nishida S (2001) Time perception: Brain time or event time? Curr Biol 11:427–430

    Article  Google Scholar 

  • Keetels M, Vroomen J (2005) The role of spatial disparity and hemifields in audio-visual temporal-order judgments. Exp Brain Res 167:635–640

    Article  PubMed  Google Scholar 

  • Kopinska A, Harris LR (2004) Simultaneity constancy. Perception 33:1049–1060

    Article  PubMed  Google Scholar 

  • Koppen C, Spence C (2007a) Audiovisual asynchrony modulates the Colavita visual dominance effect. Brain Res 1186:224–232

    Article  PubMed  CAS  Google Scholar 

  • Koppen C, Spence C (2007b) Spatial coincidence modulates the Colavita visual dominance effect. Neurosci Lett 417:407–411

    Article  CAS  Google Scholar 

  • Kuss M, Jäkel F, Wichmann FA (2005) Bayesian inference for psychometric functions. J Vis 5:478–492

    Article  PubMed  Google Scholar 

  • Lewald J, Guski R (2004) Auditory–visual temporal integration as a function of distance: no compensation for sound-transmission time in human perception. Neurosci Lett 357:119–122

    Article  PubMed  CAS  Google Scholar 

  • Lewald J, Ehrenstein WH, Guski R (2001) Spatio-temporal constraints for auditory–visual integration. Behav Brain Res 121:69–79

    Article  PubMed  CAS  Google Scholar 

  • Loeb M, Behar I, Warm JS (1966) Cross-modal correlations of the perceived durations of auditory and visual stimuli. Psychonomic Sci 6:87

    Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229

    PubMed  CAS  Google Scholar 

  • Moore CJ (2003) An introduction to the psychology of hearing, 5th edn. Emerald Group Publishing, UK

    Google Scholar 

  • Neubauer H, Heil P (2008) A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers. Brain Res 1220:208–223

    Article  PubMed  CAS  Google Scholar 

  • Neumann O, Niepel M (2004) Timing of “perception” and perception of “time”. In: Kärnbach C, Schröger E, Müller H (eds) Psychophysics beyond sensation: laws and invariants of human cognition. Erlbaum, Mahwah, pp 245–269

    Google Scholar 

  • Neumann O, Koch R, Niepel M et al (1992) Reaktionszeit und zeitliches Reihenfolgeurteil: Übereinstimmung oder Dissoziation? [Reaction time and temporal-order judgment: Correspondence or Dissociation]. Z Exp Angew Psychol 39:621–645

    PubMed  CAS  Google Scholar 

  • Nilsson T (2006) Transient effects in vision. In: Karwowski W (ed) International encyclopedia of ergonomics and human factors, 2nd edn. CRC Press, USA, pp 520–533

    Google Scholar 

  • Parise CV, Spence C (2009) ‘When birds of a feather flock together’: synesthetic correspondences modulate audiovisual integration in non-synesthetes. PLoS ONE 4(5):e5664

    Google Scholar 

  • Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol 109:160–174

    PubMed  CAS  Google Scholar 

  • Rains JD (1963) Signal luminance and position effects in human reaction time. Vis Res 3:239–251

    Article  Google Scholar 

  • Rorden C, Mattingley JB, Karnath H-O, Driver J (1997) Visual extinction and prior entry: impaired perception of temporal-order with intact motion perception after unilateral parietal damage. Neuropsychologia 35:421–433

    Article  PubMed  CAS  Google Scholar 

  • Roufs JAJ (1974) Dynamic properties of vision-V. Perception lag and reaction time in relation to flicker and flash thresholds. Vis Res 14:853–869

    Article  PubMed  CAS  Google Scholar 

  • Rutschmann J, Link R (1964) Perception of temporal-order of stimuli differing in sense mode and simple reaction time. Percept Mot Skills 18:345–352

    PubMed  CAS  Google Scholar 

  • Scharlau I (2004) Evidence against response bias in temporal-order tasks with attention manipulation by masked primes. Psychol Res 68:224–236

    PubMed  Google Scholar 

  • Schiefer U, Strasburger H, Becker et al (2001) Reaction time in automated kinetic perimetry: effects of stimulus luminance, eccentricity, and movement direction. Vis Res 41:2157–2164

    Article  PubMed  CAS  Google Scholar 

  • Schimmel O, Kohlrausch A (2008) On the influence of interaural differences on temporal perception of noise bursts of different durations. J Acoust Soc Am 123:986–997

    Article  PubMed  Google Scholar 

  • Shore DI, Spence C, Klein RM (2001) Visual prior entry. Psychol Sci 12:205–212

    Article  PubMed  CAS  Google Scholar 

  • Slutsky DA, Recanzone GH (2001) Temporal and spatial dependency of the ventriloquism effect. Neuroreport 12:7–10

    Article  PubMed  CAS  Google Scholar 

  • Smith WF (1933) The relative quickness of visual and auditory perception. J Exp Psychol 16:239–257

    Article  Google Scholar 

  • Spence C, Driver J (eds) (2004) Crossmodal space and crossmodal attention. Oxford University Press, Oxford

    Google Scholar 

  • Spence C, Squire S (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:519–521

    Article  CAS  Google Scholar 

  • Spence C, Shore DI, Klein RM (2001) Multisensory prior entry. J Exp Psychol Gen 130:799–832

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Stelmach LB, Herdman CM (1991) Directed attention and perception of temporal-order. J Exp Psychol: HPP 17:539–550

    Article  CAS  Google Scholar 

  • Stone JV, Hunkin NM, Porill J et al (2001) When is now? Perception of simultaneity. Proc Biol Sci 268:31–38

    Article  PubMed  CAS  Google Scholar 

  • Sugita Y, Suzuki Y (2003) Audiovisual perception: implicit estimation of sound-arrival time. Nature 421:911

    Article  PubMed  CAS  Google Scholar 

  • Tajadura-Jiménez A, Kitagawa N, Väljamäe A et al (2009) Auditory–somatosensory multisensory interactions are spatially modulated by stimulated body surface and acoustic spectra. Neuropsychologia 47:195–203

    Article  PubMed  Google Scholar 

  • Titchener EB (1908) Lectures on the elementary psychology of feeling and attention. Macmillan, New York

    Book  Google Scholar 

  • Van Eijk RLJ, Kohlrausch A, Juola JF et al (2008) Audiovisual synchrony and temporal-order judgments: effects of experimental method and stimulus type. Percept Psychophys 70:955–968

    Article  PubMed  Google Scholar 

  • Vatakis A, Spence C (2007) Crossmodal binding: evaluating the “unity assumption” using audiovisual speech stimuli. Percept Psychophys 69:744–756

    PubMed  Google Scholar 

  • Vatakis A, Navarra J, Soto-Faraco S et al (2007) Temporal recalibration during asynchronous audiovisual speech perception. Exp Brain Res 181:173–181

    Article  PubMed  Google Scholar 

  • Vatakis A, Navarra J, Soto-Faraco S et al (2008) Audiovisual temporal adaptation of speech: temporal-order versus simultaneity judgments. Exp Brain Res 185:521–529

    Article  PubMed  Google Scholar 

  • von Helmholtz H (1867) Handbuch der Physiologischen Optik. (Algem Enz d Physik Bnd 9). Leopold Voss, Berlin

    Google Scholar 

  • Vroomen J, Keetels M, de Gelder B et al (2004) Recalibration of temporal-order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22:32–35

    Article  Google Scholar 

  • Zampini M, Shore DI, Spence C (2003a) Audiovisual temporal-order judgments. Exp Brain Res 152:198–210

    Article  PubMed  Google Scholar 

  • Zampini M, Shore DI, Spence C (2003b) Multisensory temporal-order judgments: the role of hemispheric redundancy. Int J Psychophysiol 50:165–180

    Article  PubMed  Google Scholar 

  • Zampini M, Guest S, Shore DI et al (2005a) Audio-visual simultaneity judgments. Percept Psychophys 67:531–544

    PubMed  Google Scholar 

  • Zampini M, Shore DI, Spence C (2005b) Audiovisual prior entry. Neurosci Lett 381:217–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers and Charles Spence for their valuable comments. Furthermore, we would like to thank Cees van Leeuwen and Andrey R. Nikolaev for critical discussion of a previous version of the manuscript. Finally, we would like to thank Anna Fiedler and Felix Ball for assistance during data collection. This study was supported by a grant from the European Community (“DIRAC”, FP6-IST-027787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Ohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boenke, L.T., Deliano, M. & Ohl, F.W. Stimulus duration influences perceived simultaneity in audiovisual temporal-order judgment. Exp Brain Res 198, 233–244 (2009). https://doi.org/10.1007/s00221-009-1917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1917-z

Keywords

Navigation