Skip to main content
Log in

TMS disruption of V5/MT+ indicates a role for the dorsal stream in word recognition

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Although word recognition is a skill commonly expected to rely more on ventral rather than dorsal stream processing, there is some evidence for a magnocellular/dorsal impairment in dyslexia. The early rapid feedforward/feedback loop through the dorsal stream seen in primate has been suggested to allow an initial global analysis, and in human early activation of parietal attention mechanisms for detecting salient stimuli, facilitating more local level detailed ventral stream processing. To test this model in humans, transcranial magnetic stimulation (TMS) was used to probe the role of early visual cortex (V1/V2) and V5/MT+ in single word identification. TMS over V1/V2 between word onset and 36 ms post word onset disrupted accurate word discrimination, with disruption also evident at approximately 99 ms. TMS over V5/MT+ also disrupted accuracy following stimulation at approximately the same time as word onset and again at 130 ms post word onset. Thus, a role for V5/MT+ in accurate single word identification is apparent suggesting rapid triggering of attention to salient exogenous stimuli may be required prior to processing in primary and temporal cortical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458–462

    Article  PubMed  CAS  Google Scholar 

  • Amitay S, Ben-Yehudah G, Banai K, Ahissar M (2002) Disabled readers suffer from visual and auditory impairments but not from a specific magnocellular deficit. Brain 125:2272–2285

    Article  PubMed  Google Scholar 

  • Anand S, Olson JD, Hotson JR (1998) Tracing the timing of human analysis of motion and chromatic signals from occipital to temporo-parieto-occipital cortex: a transcranial magnetic stimulation study. Vision Res 38:2619–2627

    Article  PubMed  CAS  Google Scholar 

  • Antal A, Kincses TZ, Nitsche MA, Paulus W (2003) Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41:1802–1807

    Article  PubMed  Google Scholar 

  • Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, Hamalainen MS, Marinkovic K, Schacter DL, Rosen BR, Halgren E (2006) Top-down facilitation of visual recognition. Proc Natl Acad Sci USA 103:449–454

    Article  PubMed  CAS  Google Scholar 

  • Beck DM, Muggleton N, Walsh V, Lavie N (2006) Right parietal cortex plays a critical role in change blindness. Cereb Cortex 16:712–717

    Article  PubMed  Google Scholar 

  • Beckers G, Homberg V (1992) Cerebral visual motion blindness: transitory akinetopsia induced by transcranial magnetic stimulation of human area V5. Proc R Soc Lond Ser B Biol Sci 249:173–178

    Article  CAS  Google Scholar 

  • Beckers G, Zeki S (1995) The consequences of inactivating areas V1 and V5 on visual motion perception. Brain 118:49–60

    Article  PubMed  Google Scholar 

  • Ben-Shachar M, Dougherty RF, Deutsch GK, Wandell BA (2007) Contrast responsivity in MT+ correlates with phonological awareness and reading measures in children. Neuroimage 37:1396–1406

    Article  PubMed  Google Scholar 

  • Braet W, Humphreys GW (2006) Case mixing and the right parietal cortex: evidence from rTMS. Exp Brain Res 168:265–271

    Article  PubMed  CAS  Google Scholar 

  • Bridge H, Thomas O, Jbabdi S, Cowey A (2008) Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131:1433–1444

    Article  PubMed  Google Scholar 

  • Buchner H, Gobbele R, Wagner M, Fuchs M, Waberski TD, Beckmann R (1997) Fast visual evoked potential input into human area V5. NeuroReport 8:2419–2422

    Article  PubMed  CAS  Google Scholar 

  • Bullier J (2001) Integrated model of visual processing. Brain Res Brain Res Rev 36:96–107

    Article  PubMed  CAS  Google Scholar 

  • Chambers CD, Payne JM, Stokes MG, Mattingley JB (2004) Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7:217–218

    Article  PubMed  CAS  Google Scholar 

  • Chase C, Ashourzadeh A, Kelly C, Monfette S, Kinsey K (2003) Can the magnocellular pathway read? Evidence from studies of color. Vision Res 43:1211–1222

    Article  PubMed  Google Scholar 

  • Chen CM, Lakatos P, Shah AS, Mehta AD, Givre SJ, Javitt DC, Schroeder CE (2007) Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. Cereb Cortex 17:1561–1569

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Corthout E, Uttl B, Walsh V, Hallett M, Cowey A (1999a) Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. NeuroReport 10:2631–2634

    Article  PubMed  CAS  Google Scholar 

  • Corthout E, Uttl B, Ziemann U, Cowey A, Hallett M (1999b) Two periods of processing in the (circum)striate visual cortex as revealed by transcranial magnetic stimulation. Neuropsychologia 37:137–145

    Article  PubMed  CAS  Google Scholar 

  • Crewther SG, Crewther DP, Klistorner A, Kiely PM (1999) Development of the magnocellular VEP in children: implications for reading disability. Electroencephalogr Clin Neurophysiol Suppl 49:123–128

    PubMed  CAS  Google Scholar 

  • Demb JB, Boynton GM, Heeger DJ (1998) Functional magnetic resonance imaging of early visual pathways in dyslexia. J Neurosci 18:6939–6951

    PubMed  CAS  Google Scholar 

  • Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA (1996) Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382:66–69

    Article  PubMed  CAS  Google Scholar 

  • Ellison A, Cowey A (2009) Differential and co-involvement of areas of the temporal and parietal streams in visual tasks. Neuropsychologia 47:1609–1614

    Article  PubMed  Google Scholar 

  • Fenske MJ, Aminoff E, Gronau N, Bar M (2006) Top-down facilitation of visual object recognition: object-based and context-based contributions. Prog Brain Res 155:3–21

    Article  PubMed  Google Scholar 

  • Ferrera VP, Nealey TA, Maunsell JH (1992) Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature 358:756–761

    Article  PubMed  CAS  Google Scholar 

  • Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans: a framework for defining “early” visual processing. Exp Brain Res 142:139–150

    Article  PubMed  Google Scholar 

  • Habib M (2000) The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123:2373–2399

    Article  PubMed  Google Scholar 

  • Heinen K, Jolij J, Lamme VA (2005) Figure-ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study. NeuroReport 16:1483–1487

    Article  PubMed  Google Scholar 

  • Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R (2005) Bootstrap methods and permutation tests. In: Moore DS, McCabe GP (eds) Introduction to the practice of statistics. W.H. Freeman & Co., New York

    Google Scholar 

  • Hotson J, Braun D, Herzberg W, Boman D (1994) Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination. Vision Res 34:2115–2123

    Article  PubMed  CAS  Google Scholar 

  • Hupe JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787

    Article  PubMed  CAS  Google Scholar 

  • Inui K, Kakigi R (2006) Temporal analysis of the flow from V1 to the extrastriate cortex in humans. J Neurophysiol 96:775–784

    PubMed  Google Scholar 

  • Kastner S, Demmer I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp Brain Res 118:19–26

    Article  PubMed  CAS  Google Scholar 

  • Kevan A, Pammer K (2008) Making the link between dorsal stream sensitivity and reading. NeuroReport 19:467–470

    Article  PubMed  Google Scholar 

  • Kinsey K, Hansen PC, Chase CH (2006) Dorsal stream associations with orthographic and phonological processing. NeuroReport 17:335–339

    Article  PubMed  Google Scholar 

  • Klistorner A, Crewther DP, Crewther SG (1997) Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP. Vision Res 37:2161–2169

    Article  PubMed  CAS  Google Scholar 

  • Kuriki S, Takeuchi F, Hirata Y (1998) Neural processing of words in the human extrastriate visual cortex. Brain Res Cogn Brain Res 6:193–203

    Article  PubMed  CAS  Google Scholar 

  • Laycock R, Crewther SG, Kiely PM, Crewther DP (2006) Parietal function in good and poor readers. Behav Brain Funct 2:26

    Article  PubMed  Google Scholar 

  • Laycock R, Crewther DP, Fitzgerald PB, Crewther S (2007a) Evidence for fast signals and later processing in human V1/V2 and V5/MT+: a TMS study of motion perception. J Neurophysiol 98:1253–1262

    Article  PubMed  Google Scholar 

  • Laycock R, Crewther SG, Crewther DP (2007b) A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neurosci Biobehav Rev 31:363–376

    Article  PubMed  CAS  Google Scholar 

  • Laycock R, Crewther SG, Crewther DP (2008) The advantage in being magnocellular: a few more remarks on attention and the magnocellular system. Neurosci Biobehav Rev 32:1409–1415

    Article  PubMed  CAS  Google Scholar 

  • Liederman J, McGraw Fisher J, Schulz M, Maxwell C, Theoret H, Pascual-Leone A (2003) The role of motion direction selective extrastriate regions in reading: a transcranial magnetic stimulation study. Brain Lang 85:140–155

    Article  PubMed  Google Scholar 

  • Lovegrove W, Bowling A, Badcock B, Blackwood M (1980) Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. Science 210:439–440

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334

    PubMed  CAS  Google Scholar 

  • Morand S, Thut G, de Peralta RG, Clarke S, Khateb A, Landis T, Michel CM (2000) Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. Cereb Cortex 10:817–825

    Article  PubMed  CAS  Google Scholar 

  • Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    Article  PubMed  CAS  Google Scholar 

  • Nobre AC, Allison T, McCarthy G (1994) Word recognition in the human inferior temporal lobe. Nature 372:260–263

    Article  PubMed  CAS  Google Scholar 

  • Nowak LG, Munk MH, Girard P, Bullier J (1995) Visual latencies in areas V1 and V2 of the macaque monkey. Vis Neurosci 12:371–384

    Article  PubMed  CAS  Google Scholar 

  • Omtzigt D, Hendriks A, Kolk H (2002) Evidence for magnocellular involvement in the identification of flanked letters. Neuropsychologia 40:1881

    Article  PubMed  Google Scholar 

  • Pammer K, Hansen P, Holliday I, Cornelissen P (2006) Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia 44:2926–2936

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512

    Article  PubMed  CAS  Google Scholar 

  • Paulus W, Korinth S, Wischer S, Tergau F (1999) Differential inhibition of chromatic and achromatic perception by transcranial magnetic stimulation of the human visual cortex. NeuroReport 10:1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Ro T, Breitmeyer B, Burton P, Singhal NS, Lane D (2003) Feedback contributions to visual awareness in human occipital cortex. Curr Biol 13:1038–1041

    Article  PubMed  CAS  Google Scholar 

  • Robertson EM, Theoret H, Pascual-Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 15:948–960

    Article  PubMed  CAS  Google Scholar 

  • Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018

    Article  PubMed  Google Scholar 

  • Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski JS, Crewther DP, Crewther SG (2003) Change detection is impaired in children with dyslexia. J Vis 3:95–105

    Article  PubMed  Google Scholar 

  • Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615

    Article  PubMed  CAS  Google Scholar 

  • Sack AT, Kohler A, Linden DE, Goebel R, Muckli L (2006) The temporal characteristics of motion processing in hMT/V5+: combining fMRI and neuronavigated TMS. Neuroimage 29:1326–1335

    Article  PubMed  Google Scholar 

  • Salmelin R, Service E, Kiesila P, Uutela K, Salonen O (1996) Impaired visual word processing in dyslexia revealed with magnetoencephalography. Ann Neurol 40:157–162

    Article  PubMed  CAS  Google Scholar 

  • Silvanto J, Lavie N, Walsh V (2005) Double dissociation of V1 and V5/MT activity in visual awareness. Cereb Cortex 15:1736–1741

    Article  PubMed  Google Scholar 

  • Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Skottun BC (2000) The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Res 40:111–127

    Article  PubMed  CAS  Google Scholar 

  • Stein J (2001) The magnocellular theory of developmental dyslexia. Dyslexia 7:12–36

    Article  PubMed  CAS  Google Scholar 

  • Stewart L, Battelli L, Walsh V, Cowey A (1999) Motion perception and perceptual learning studied by magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:334–350

    PubMed  CAS  Google Scholar 

  • Supèr H, Lamme VA (2007) Altered figure-ground perception in monkeys with an extra-striate lesion. Neuropsychologia 45:3329–3334

    Article  PubMed  Google Scholar 

  • Supèr H, Spekreijse H, Lamme VA (2001) Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat Neurosci 4:304–310

    Article  PubMed  Google Scholar 

  • Tarkiainen A, Helenius P, Hansen PC, Cornelissen PL, Salmelin R (1999) Dynamics of letter string perception in the human occipitotemporal cortex. Brain 122:2119–2132

    Article  PubMed  Google Scholar 

  • Van Essen DC, Maunsell JHR (1983) Hierarchical organisation and functional streams in the visual cortex. Trends Neurosci 6:370–375

    Article  Google Scholar 

  • Vidyasagar TR (2005) Attentional gating in primary visual cortex: a physiological basis for dyslexia. Perception 34:903–911

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a NHMRC Practitioner Fellowship to Paul Fitzgerald, and equipment support from Neurosciences Australia Clinical Neurobiology of Psychiatry Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Laycock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laycock, R., Crewther, D.P., Fitzgerald, P.B. et al. TMS disruption of V5/MT+ indicates a role for the dorsal stream in word recognition. Exp Brain Res 197, 69–79 (2009). https://doi.org/10.1007/s00221-009-1894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1894-2

Keywords

Navigation