Skip to main content
Log in

Action preparation enhances the processing of tactile targets

  • Research article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We present two experiments in which we investigated whether tactile attention is modulated by action preparation. In Experiment 1, participants prepared a saccade toward either the left or right index finger, depending on the pitch of a non-predictive auditory cue. In Experiment 2, participants prepared to lift the left or right index finger in response to the auditory cue. In half of the trials in both experiments, a suprathreshold vibratory stimulus was presented with equal probability to either finger, to which the participants made a speeded foot response. The results showed facilitation in the processing of targets delivered at the goal location of the prepared movement (Experiment 1), as well as at the effector of the prepared movement (Experiment 2). These results are discussed within the framework of theories on motor preparation and spatial attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldauf D, Deubel H (2006) Deployment of visual attention before sequences of goal-directed hand movements. Vis Res 46:4355–4374

    Article  PubMed  Google Scholar 

  • Baldauf D, Deubel H (2008) Visual attention during the preparation of bimanual movements. Vis Res 48:549–563

    Article  PubMed  Google Scholar 

  • Bays PM, Wolpert DM, Flanagan JR (2005) Perception of the consequences of self-action is temporally tuned and event-driven. Curr Biol 15:1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Blakemore S-J, Frith CD, Wolpert DM (1999) Spatio-temporal prediction modulates the perception of self-produced stimuli. J Cogn Neurosci 11:551–559

    Article  PubMed  CAS  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffman K-P, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalences between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  • Chambers CD, Stokes MG, Mattingley JB (2004) Modality-specific control of strategic spatial attention in parietal cortex. Neuron 44:925–930

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Andersen RA (2004) Multimodal spatial representations in the primate parietal lobe. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 99–122

    Google Scholar 

  • Colby CL (1998) Action-oriented spatial reference frames in cortex. Neuron 20:15–24

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX, Paprotta I (1998) Selective dorsal and ventral processing: evidence for a common attentional mechanism in reaching and perception. Vis Cogn 5:81–107

    Article  Google Scholar 

  • Diederich A, Colonius H, Bockhorst D, Tabeling S (2003) Visual–tactile spatial interaction in saccade generation. Exp Brain Res 148:328–337

    PubMed  Google Scholar 

  • Eimer M (2001) Crossmodal links in spatial attention between vision, audition, and touch: evidence from event-related brain potentials. Neuropsychologia 39:1292–1303

    Article  PubMed  CAS  Google Scholar 

  • Eimer M, van Velzen J (2002) Crossmodal links in spatial attention are mediated by supramodal control processes: evidence from event-related potentials. Psychophysiology 39:437–449

    Article  PubMed  Google Scholar 

  • Eimer M, van Velzen J, Forster B, Driver J (2003) Shifts of attention in light and in darkness: and ERP study of supramodal attention control and crossmodal links in spatial attention. Cogn Brain Res 15:308–323

    Article  Google Scholar 

  • Eimer M, Forster B, van Velzen J, Prabhu G (2005) Covert manual response preparation triggers attentional shifts: ERP evidence for the premotor theory of attention. Neuropsychologia 43:957–966

    Article  PubMed  Google Scholar 

  • Farah MJ, Wong AB, Monheit MA, Morrow MA (1989) Parietal lobe mechanisms of spatial attention: modality-specific or supramodal? Neuropsychologia 27:461–470

    Article  PubMed  CAS  Google Scholar 

  • Fogassi L, Gallese V (2004) Action as a binding key to multisensory integration. In: Calvert GA, Spence C, Stein BA (eds) The handbook of multisensory processes. MIT Press, Cambridge, pp 425–441

    Google Scholar 

  • Forster B, Eimer M (2007) Covert unimanual response preparation triggers attention shifts to effectors rather than goal locations. Neurosci Lett 419:142–146

    Article  PubMed  CAS  Google Scholar 

  • Gherri E, Eimer M (2008) Links between eye-movement preparation and the attentional processing of tactile events: an event-related brain potential study. Clin Neurophysiol 119:2587–2597

    Article  PubMed  Google Scholar 

  • Graziano MSA, Gross CG (1996) Multiple pathways for processing visual space. In: Inui T, McClelland JL (eds) Attention and performance XVI. MIT Press, Cambridge, pp 181–207

    Google Scholar 

  • Graziano MSA, Gross CG, Taylor CSR, Moore T (2004) A system of multimodal areas in the primate brain. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 51–68

    Google Scholar 

  • Groh JM, Sparks DL (1996a) Saccades to somatosensory targets. I. Behavioral characteristics. J Neurophysiol 75:412–427

    PubMed  CAS  Google Scholar 

  • Groh JM, Sparks DL (1996b) Saccades to somatosensory targets. III. Eye-position dependent somatosensory activity in primate superior colliculus. J Neurophysiol 75:439–453

    PubMed  CAS  Google Scholar 

  • Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Perception Psychophys 57:787–795

    CAS  Google Scholar 

  • Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11:1188–1191

    Article  PubMed  CAS  Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35:1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Merat N, McGlone F, Spence C (2003) Crossmodal links between audition and touch in covert endogenous spatial attention. Percept Psychophys 65:901–924

    PubMed  Google Scholar 

  • Rizzolatti G, Riggio L, Sheliga B (1994) Space and selective attention. In: Umiltà C, Moscovitch M (eds) Attention and performance XV. MIT Press, Cambridge, pp 231–265

    Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalograph Clin Neurophysiol 106:283–296

    Article  CAS  Google Scholar 

  • Rorden C, Greene K, Sasine GM, Baylis GC (2002) Enhanced tactile performance at the destination of an upcoming saccade. Curr Biol 12:1–6

    Article  Google Scholar 

  • Shergill SS, Bays PM, Frith CD, Wolpert DM (2003) Two eyes for an eye: the neuroscience of force escalation. Science 301:187

    Article  PubMed  CAS  Google Scholar 

  • Spence C, Driver J (1996) Audiovisual links in endogenous covert spatial attention. JEP:HPP 22:1005–1030

    CAS  Google Scholar 

  • Spence C, Driver J (2004) Crossmodal space and crossmodal attention. Oxford University Press, Oxford

    Google Scholar 

  • Spence C, Pavani F, Driver J (2000) Crossmodal links between vision and touch in covert endogenous attention. JEP:HPP 26:1298–1319

    CAS  Google Scholar 

  • Spence C, Pavani F, Maravita A, Holmes N (2008) Multisensory contributions to the representation of peripersonal space in humans: evidence from the crossmodal congruency task. In: Lin M (ed) Haptic rendering: foundations, algorithms, and applications. AK Peters, Wellesley, pp 27–69

    Google Scholar 

  • Tipper SP, Lloyd D, Shorland D, Howard LA, McGlone F (1998) Vision influences tactile perception without proprioceptive orienting. Neuroreport 9:1741–1744

    Article  PubMed  CAS  Google Scholar 

  • Voss M, Ingram JN, Haggard P, Wolpert DM (2006) Sensorimotor attenuation by central motor command signals in the absence of movement. Nat Neurosci 9:26–27

    Article  PubMed  CAS  Google Scholar 

  • Whang KC, Burton H, Shulman GL (1991) Selective attention in vibrotactile tasks: detecting the presence and absence of amplitude change. Percept Psychophys 50:157–165

    PubMed  CAS  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 18:R729–R732

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Cluster of Excellence ‘Cognition in Technical Systems’ (Project 301) and by the 7th Framework Programme of the European Community (Project “GRASP”, ICT-215821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiana Juravle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juravle, G., Deubel, H. Action preparation enhances the processing of tactile targets. Exp Brain Res 198, 301–311 (2009). https://doi.org/10.1007/s00221-009-1819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1819-0

Keywords

Navigation