Skip to main content

Advertisement

Log in

Translating nociceptive processing into human pain models

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

As volunteers can easily communicate quality and intensity of painful stimuli, human pain models appear to be ideally suited to test analgesic compounds, but also to study pain mechanisms. Acute stimulation of nociceptors under physiologic conditions has proven not to be of particular use as an experimental pain model. In contrast, if the experimental models include sensitization of the peripheral or central pain processing they may indeed mimic certain aspects of chronic pain conditions. Peripheral inflammatory conditions can be induced experimentally with sensitization patterns correlating to clinical inflammatory pain. There are also well-characterized models of central sensitization, which mimic aspects of neuropathic pain patients such as touch evoked allodynia and punctate hyperalgesia. The main complaint of chronic pain patients, however, is spontaneous pain, but currently there is no human model available that would mimic chronic inflammatory or neuropathic pain. Thus, although being helpful for proof of concept studies and dose finding, current human pain models cannot replace patient studies for testing efficacy of analgesic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angst MS, Koppert W, Pahl I, Clark DJ, Schmelz M (2003) Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain 106:49–57

    Article  PubMed  CAS  Google Scholar 

  • Bickel A, Dorfs S, Schmelz M, Forster C, Uhl W, Handwerker HO (1998) Effects of antihyperalgesic drugs on experimentally induced hyperalgesia in man. Pain 76:317–325

    Article  PubMed  CAS  Google Scholar 

  • Bishop T, Hewson DW, Yip PK, Fahey MS, Dawbarn D, Young AR, McMahon SB (2007) Characterisation of ultraviolet-B-induced inflammation as a model of hyperalgesia in the rat. Pain 131:70–82

    Article  PubMed  CAS  Google Scholar 

  • Bishop T, Ballard A, Holmes H, Young AR, McMahon SB (2009) Ultraviolet-B induced inflammation of human skin: characterisation and comparison with traditional models of hyperlagesia. Eur J Pain 13:524–532

    Article  PubMed  CAS  Google Scholar 

  • Blunk JA, Schmelz M, Zeck S, Skov P, Likar R, Koppert W (2004) Opioid-induced mast cell activation and vascular responses is not mediated by micro -opioid receptors: an in vivo microdialysis study in human skin. Anesth Analg 98:364–370

    Article  PubMed  CAS  Google Scholar 

  • Cervero F, Gilbert R, Hammond RGE, Tanner J (1993) Development of secondary hyperalgesia following nonpainful thermal stimulation of the skin a psychophysical study in man. Pain 54:181–189

    Article  PubMed  CAS  Google Scholar 

  • Chapman LF, Dingman HF, Ginzberg SP (1965) Failure of systemic analgesic agents to alter the absolute sensory threshold for the simple detection of pain. Brain 88:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Gallar J, Pozo MA, Baeza M, Belmonte C (1995) CO2 stimulation of the cornea: a comparison between human sensation and nerve activity in polymodal nociceptive afferents of the cat. Eur J NeuroSci 7:1154–1163

    Article  PubMed  CAS  Google Scholar 

  • Chizh BA, Gohring M, Troster A, Quartey GK, Schmelz M, Koppert W (2007a) Effects of oral pregabalin and aprepitant on pain and central sensitization in the electrical hyperalgesia model in human volunteers. Br J Anaesth 98:246–254

    Article  PubMed  CAS  Google Scholar 

  • Chizh BA, O’Donnell MB, Napolitano A, Wang J, Brooke AC, Aylott MC, Bullman JN, Gray EJ, Lai RY, Williams PM, Appleby JM (2007) The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 132:132–141

    Google Scholar 

  • Devor M, Seltzer Z (1999) Pathophysiology of injured nerve. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, Edinburgh, pp 129–164

  • Dyck PJ, Peroutka S, Rask C, Burton E, Baker MK, Lehman KA, Gillen DA, Hokanson JL, Obrien PC (1997) Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat pain threshold in humans. Neurology 48:501–505

    PubMed  CAS  Google Scholar 

  • Eisenbarth H, Rukwied R, Petersen M, Schmelz M (2004) Sensitization to bradykinin B1 and B2 receptor activation in UV-B irradiated human skin. Pain 110:197–204

    Article  PubMed  CAS  Google Scholar 

  • Fairweather I, McGlone F, Reilly D, Rukwied R (2004) Controlled dermal cell damage as human in vivo model for localised pain and inflammation. Inflamm Res 53:118–123

    Article  PubMed  CAS  Google Scholar 

  • Forster C, Magerl W, Beck A, Geisslinger G, Gall T, Brune K, Handwerker HO (1992) Differential effects of dipyrone, ibuprofen, and paracetamol on experimentally induced pain in man. Agents Actions 35:112–121

    Article  PubMed  CAS  Google Scholar 

  • Gustorff B, Anzenhofer S, Sycha T, Lehr S, Kress HG (2004) The sunburn pain model: the stability of primary and secondary hyperalgesia over 10 hours in a crossover setting. Anesth Analg 98:173–177

    Article  PubMed  Google Scholar 

  • Hamilton SG, Warburton J, Bhattacharjee A, Ward J, McMahon SB (2000) ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain 123:1238–1246

    Article  PubMed  Google Scholar 

  • Hoffmann RT, Schmelz M (1999) Time course of UVA- and UVB-induced inflammation and hyperalgesia in human skin. Eur J Pain 3:131–139

    Article  PubMed  Google Scholar 

  • Hosogi M, Schmelz M, Miyachi Y, Ikoma A (2006) Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain 126:16–23

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Ikoma A, Fartasch M, Heyer G, Miyachi Y, Handwerker H, Schmelz M (2004) Painful stimuli evoke itch in patients with chronic pruritus: central sensitization for itch. Neurology 62:212–217

    PubMed  CAS  Google Scholar 

  • Kilo S, Schmelz M, Koltzenburg M, Handwerker HO (1994) Different patterns of hyperalgesia induced by experimental inflammations in human skin. Brain 117:385–396

    Article  PubMed  Google Scholar 

  • Kilo S, Forster C, Geisslinger G, Brune K, Handwerker HO (1995) Inflammatory models of cutaneous hyperalgesia are sensitive to effects of ibuprofen in man. Pain 62:187–193

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Magerl W, Hopf HC, Sandkuhler J, Treede RD (2004) Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 24:964–971

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Magerl W, Nickel U, Hopf HC, Sandkuhler J, Treede RD (2007) Effects of the NMDA-receptor antagonist ketamine on perceptual correlates of long-term potentiation within the nociceptive system. Neuropharmacology 52:655–661

    Article  PubMed  CAS  Google Scholar 

  • Kohlloffel LU, Koltzenburg M, Handwerker HO (1991) A novel technique for the evaluation of mechanical pain and hyperalgesia. Pain 46:81–87

    Article  PubMed  CAS  Google Scholar 

  • Koltzenburg M, Torebjörk HE, Wahren LK (1994) Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain. Brain 117:579–591

    Article  PubMed  Google Scholar 

  • Koppert W, Dern SK, Sittl R, Albrecht S, Schuttler J, Schmelz M (2001) A new model of electrically evoked pain and hyperalgesia in human skin: the effects of intravenous alfentanil, S(+)-ketamine, and lidocaine. Anesthesiology 95:395–402

    Article  PubMed  CAS  Google Scholar 

  • Koppert W, Brueckl V, Weidner C, Schmelz M (2004) Mechanically induced axon reflex and hyperalgesia in human UV-B burn are reduced by systemic lidocaine. Eur J Pain 8:237–244

    Article  PubMed  CAS  Google Scholar 

  • Lotsch J, Angst MS (2003) The μ-opioid agonist remifentanil attenuates hyperalgesia evoked by blunt and punctuated stimuli with different potency: a pharmacological evaluation of the freeze lesion in humans. Pain 102:151–161

    Article  PubMed  Google Scholar 

  • Miller CC, Hale P, Pentland AP (1994) Ultraviolet B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway, Evidence for UVB-induced epidermal growth factor receptor activation. J Biol Chem 269:3529–3533

    PubMed  CAS  Google Scholar 

  • Mohammadian P, Hummel T, Loetsch J, Kobal G (1997) Bilateral hyperalgesia to chemical stimulation of the nasal mucosa following unilateral inflammation. Pain 73:407–412

    Article  PubMed  CAS  Google Scholar 

  • Moiniche S, Dahl JB, Kehlet H (1993) Time course of primary and secondary hyperalgesia after heat injury to the skin. Br J Anaesth 71:201–205

    Article  PubMed  CAS  Google Scholar 

  • Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33:465–472

    Article  PubMed  CAS  Google Scholar 

  • Pedersen JL, Kehlet H (1998) Secondary hyperalgesia to heat stimuli after burn injury in man. Pain 76:377–384

    Article  PubMed  CAS  Google Scholar 

  • Petersen KL, Rowbotham MC (1999) A new human experimental pain model: the heat/capsaicin sensitization model. NeuroReport 10:1511–1516

    Article  PubMed  CAS  Google Scholar 

  • Petersen K, Schmelz M (2008) Human pain models: virtues and limitations. In: Castro-Lopez J, Raja SN, Schmelz M (eds) Pain 2008. An updated review. IASP Press, Seattle, pp 77–88

    Google Scholar 

  • Petersen KL, Fields HL, Brennum J, Sandroni P, Rowbotham MC (2000) Capsaicin evoked pain and allodynia in post-herpetic neuralgia. Pain 88:125–133

    Article  PubMed  CAS  Google Scholar 

  • Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Botefur IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihofner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B (2006) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 123:231–243

    Article  PubMed  CAS  Google Scholar 

  • Rukwied R, Meyer A, Schley M, Kluschina O, Schmelz M (2008) Nerve growth factor causes sustained nociceptor sensitization in human skin. Soc Neurosci Abstr 38:267.14

    Google Scholar 

  • Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758

    Article  PubMed  Google Scholar 

  • Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjörk HE (1997) Differential sensitivity of mechanosensitive and -insensitive C-fibers in human skin to tonic pressure and capsaicin. Soc Neurosci Abstr 23(part 1):1004

    Google Scholar 

  • Schmelz M, Schmidt R, Handwerker HO, Torebjörk HE (2000) Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain 123:560–571

    Article  PubMed  Google Scholar 

  • Schmidt R, Schmelz M, Torebjörk HE, Handwerker HO (2000) Mechano-insensitive nociceptors encode pain evoked by tonic pressure to human skin. Neurosci 98:793–800

    Article  CAS  Google Scholar 

  • Simone DA, Ngeow JVF, LaMotte RH (1985) Neurogenic spread of hyperalgesia after intracutaneous injection of capsaicin in human subjects. Soc Neurosci Abstr 11:123

    Google Scholar 

  • Simone DA, Baumann TK, LaMotte RH (1989) Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain 38:99–107

    Article  PubMed  CAS  Google Scholar 

  • Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    Article  PubMed  CAS  Google Scholar 

  • Tegeder I, Meier S, Burian M, Schmidt H, Geisslinger G, Lotsch J (2003) Peripheral opioid analgesia in experimental human pain models. Brain 126:1092–1102

    Article  PubMed  Google Scholar 

  • Troster A, Sittl R, Singler B, Schmelz M, Schuttler J, Koppert W (2006) Modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by parecoxib in humans. Anesthesiology 105:1016–1023

    Article  PubMed  Google Scholar 

  • Wasner G, Schattschneider J, Binder A, Baron R (2004) Topical menthol—a human model for cold pain by activation and sensitization of C nociceptors. Brain 127:1159–1171

    Article  PubMed  Google Scholar 

  • Zhuang ZY, Xu H, Clapham DE, Ji RR (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 24:8300–8309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmelz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmelz, M. Translating nociceptive processing into human pain models. Exp Brain Res 196, 173–178 (2009). https://doi.org/10.1007/s00221-009-1809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1809-2

Keywords

Navigation