Skip to main content
Log in

Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of fMRI patterns of activation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We used multidimensional scaling (MDS) to characterize the integrative neural mechanisms during viewing and subsequently copying nine geometrical shapes. Human subjects initially looked at a central fixation point (“rest” period), then looked at a geometrical shape (“visual” period) which they copied without visual feedback (“copying” period). BOLD signal was recorded from voxels in 28 cortical areas (14 from each hemisphere) using a 4 Tesla magnet. For each voxel, signal ratios of “Visual versus Rest” (VR), and “Copy versus Visual” (CV) were calculated and used to construct two sets of Euclidean distance dissimilarity matrices for the nine shapes, with separate matrices defined for each region of interest (ROI) across subjects. The relations of perceptual and motor aspects of the shapes to MDS dimensions and specific ROIs were assessed using stepwise multiple regressions. The optimal individually scaled (INDSCAL) solutions were 2-dimensional. For the VR condition, MDS dimensions were significantly associated with the presence of crossing in a shape (Dimension 1), and with perimeter, height, cycles, peak segment speed, and horizontal symmetry (Dimension 2). ROIs most prominently associated with these dimensions essentially comprised the medial frontal lobe bilaterally, the inferior frontal gyrus bilaterally, and the left intraparietal sulcus (Dimension 1), and visual areas, including the calcarine sulcus and cuneus bilaterally (Dimension 2). These results document the expected involvement of visual areas and support the hypothesis advanced on the basis of previous findings (Lewis et al. 2003a) that a motor rehearsal of the upcoming shape copying is occurring during this visual presentation period. For the CV condition, practically one motor feature (number of segments drawn) dominated both dimensions, with a secondary engagement of horizontal symmetry in Dimension 1. The right postcentral gyrus, right intraparietal sulcus, right superior parietal lobule and right inferior parietal lobule contributed mostly to Dimension 1; the superior frontal gyrus bilaterally, right middle frontal gyrus, left postcentral gyrus, left inferior parietal lobule contributed mostly to Dimension 2; and the left superior parietal lobule and left intraparietal sulcus contributed to both dimensions approximately equally. CV BOLD activation of ROIs contributing to Dimension 1 (or to both dimensions) was significantly associated with the number of shape segments drawn. Since the direction of movement differs in successively drawn shape segments, the number of segments (minus one) equals the number of changes in the direction of movement. We conclude that this fundamental spatial motor aspect of drawing geometrical shapes is the critical variable, independent of the particular shape drawn, that dominates cortical activation during copying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelini R, Frasca R, Grossi D (1992) Are patients with constructional disorders different in visuo-spatial abilities? Acta Neurol 14:595–604

    CAS  Google Scholar 

  • Arabie P, Carroll JD, DeSarbo WS (1987) Three-way scaling and clustering. Sage, Newbury Park

    Google Scholar 

  • Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2003a) Neural activity in prefrontal cortex during copying geometrical shapes. I. Single cells encode shape, sequence, and metric parameters. Exp Brain Res 150:127–141

    PubMed  Google Scholar 

  • Averbeck BB, Crowe DA, Chafee MV, Crowe DA, Georgopoulos AP (2003b) Neural activity in prefrontal cortex during copying geometrical shapes II. Decoding shape segments from neural ensembles. Exp Brain Res 150:142–153

    PubMed  Google Scholar 

  • Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2005) Parietal representation of hand velocity in a copy task. J Neurophysiol 93:508–518

    Article  PubMed  Google Scholar 

  • Averbeck BB, Crowe DA, Chafee MV, Crowe DA, Georgopoulos AP (2008) Differential contribution of superior parietal and dorsal-lateral prefrontal cortices in copying. Cortex [Epub ahead of print]

  • Behrmann M, Winocur G, Moscovitch M (1992) Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature 359:636–637

    Article  PubMed  CAS  Google Scholar 

  • Benson DF, Barton MI (1970) Disturbances in constructional ability. Cortex 6:19–46

    PubMed  CAS  Google Scholar 

  • Benton AL (1962) The visual retention test as a constructional praxis task. Confin Neurol 22:141–155

    Article  PubMed  CAS  Google Scholar 

  • Benton AL (1967) Constructional apraxia and the minor hemisphere. Confin Neurol 29:1–16

    PubMed  CAS  Google Scholar 

  • Benton AL (1968) Differential behavioral effects in frontal lobe disease. Neuropsychologia 6:53–60

    Article  Google Scholar 

  • Carroll D, Chang J (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35:283–319

    Article  Google Scholar 

  • Cox RW, Jesmanowicz A (1999) Real-time 3d image registration for functional MRI. Magn Reson Med 42:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • De Renzi E (1982) Disorders of space exploration and cognition. Wiley, Baffins Lane

    Google Scholar 

  • Deiber MP, Ibañez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247

    PubMed  CAS  Google Scholar 

  • Gainotti G (1985) Constructional apraxia. In: Frederiks JAM (ed) Handbook of clinical neurology. Amsterdam, Elsevier, pp 491–506

    Google Scholar 

  • Georgopoulos AP (1999) Neural mechanisms of motor cognitive processes: functional MRI and neurophysiological studies. In: Gazzaniga MS (ed) The new cognitive neurosciences 2nd edn. MIT, Cambridge, pp 525–538

    Google Scholar 

  • Grossi D, Orsini A, Modafferi A, Liotti M (1986) Visuoimaginal constructional apraxia: on a case of selective deficit of imagery. Brain Cogn 5:255–267

    Article  PubMed  CAS  Google Scholar 

  • Kherif F, Poline JB, Mériaux S, Benali H, Flandin G, Brett M (2003) Group analysis in functional neuroimaging: selecting subjects using similarity measures. Neuroimage 20:2197–2208

    Article  PubMed  Google Scholar 

  • Kim SG, Hendrich K, Hu X, Merkle H, Uğurbil K (1994) Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR biomed 7:69–74

    Article  PubMed  CAS  Google Scholar 

  • Kleist K (1934) Gehirnpathologie. Barth, Leipzig

    Google Scholar 

  • Koski L, Iacoboni M, Mazziotta JC (2002) Deconstructing apraxia: understanding disorders of intentional movement after stroke. Curr Opin Neurobiol 15:71–77

    Article  Google Scholar 

  • Krams M, Rushworth MFS, Deiber M-P, Frackowiak RSJ, Passingham RE (1998) The preparation, execution and suppression of copied movements in the human brain. Exp Brain Res 120:386–398

    Article  PubMed  CAS  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. SAGE, Newbury Park

    Google Scholar 

  • Laeng B (2006) Constructional apraxia after left or right unilateral stroke. Neuropsychologia 44:1595–1606

    Article  PubMed  Google Scholar 

  • Lewis SM, Jerde TA, Tzagarakis C, Georgopoulos MA, Tsekos N, Amirikian B, Kim SG, Uğurbil K, Georgopoulos AP (2003a) Cerebellar activation during copying geometrical shapes. J Neurophysiol 90:3874–3887

    Article  PubMed  Google Scholar 

  • Lewis SM, Jerde TA, Tzagarakis C, Tsekos N, Amirikian B, Georgopoulos MA, Kim SG, Ugurbil K, Georgopoulos AP (2003b) Activation in the frontal and parietal lobes during performance of a copy task: an fMRI study. Soc Neurosci Abstr 620:1

    Google Scholar 

  • Lewis SM, Jerde TA, Tzagarakis C, Gourtzelidis P, Georgopoulos MA, Tsekos N, Amirikian B, Kim SG, Uğurbil K, Georgopoulos AP (2005) Logarithmic transformation for high-field BOLD fMRI data. Exp Brain Res 165:447–453

    Article  PubMed  Google Scholar 

  • Lukashin AV, Georgopoulos AP (1994) A neural network for coding of trajectories by time series of neuronal population vectors. Neural Comput 6:19–28

    Article  Google Scholar 

  • Lukashin AV, Wilcox GL, Georgopoulos AP (1994) Overlapping neural networks for multiple motor engrams. Proc Natl Acad Sci USA 91:8651–8654

    Article  PubMed  CAS  Google Scholar 

  • Luria AR, Tsvetkova LS (1964) The programming of constructive activity in local brain injuries. Neuropsychologia 2:95–107

    Article  Google Scholar 

  • MacCallum R (1977) Effects of conditionality on indscal and alscal weights. Psychometrika 42:297–305

    Article  Google Scholar 

  • Mack JL, Levine RN (1981) The basis of visual constructional disability in patients with unilateral cerebral lesions. Cortex 17:515–532

    PubMed  CAS  Google Scholar 

  • Makuuchi M, Kaminaga T, Sugishita M (2003) Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain Res Cogn Brain Res 16:338–347

    Article  PubMed  Google Scholar 

  • Marchini JL, Ripley BD (2000) A new statistical approach to detecting significant activation in functional MRI. Neuroimage 12:366–380

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Osterrieth PA (1944) Le test de copie d’une figure complexe: contribution à l’étude de la perception et de la mémoire. Archives de Psychologie 30:206–356

    Google Scholar 

  • Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469

    PubMed  CAS  Google Scholar 

  • Piercy M, Hécaen H, Ajuriaguerra J (1960) Constructional apraxia associated with unilateral cerebral lesions. Left and right sided cases compared. Brain 83:225–242

    Article  PubMed  CAS  Google Scholar 

  • Pillon B (1981) Troubles visuoconstructifs et methods de compensation: Resultats de 85 patients atteints de lesions cerebrales. Neuropsychologia 19:375–383

    Article  PubMed  CAS  Google Scholar 

  • Poppelreuter W (1917) Die psychische Schadigungen durch Kopfschuss im Kriege, vol 1. Leipzig, Voss

    Google Scholar 

  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698

    PubMed  CAS  Google Scholar 

  • Porteus SD (1965) The Porteus maze test; 50 years’ application. Pacific books, Palo Alto

    Google Scholar 

  • Rey A (1941) Psychological examination of traumatic encephalopathy. Archives de Psychologie 28:286–340

    Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342

    Article  PubMed  Google Scholar 

  • Schwartz AB (1994) Direct cortical representation of drawing. Science 265:540–542

    Article  PubMed  CAS  Google Scholar 

  • Strupp JP (1996) Stimulate: a gui based fMRI analysis software package. Neuroimage 3:S607

    Article  Google Scholar 

  • Suchan B, Yaguez L, Wunderlich G, Canavan AG, Herzog H, Tellmann L, Homberg V, Seitz RJ (2002) Neural correlates of visuospatial imagery. Behav Brain Res 131:163–168

    Article  PubMed  Google Scholar 

  • Tagaris GA, Richter W, Kim SG, Pellizzer G, Andersen P, Ugurbil K, Georgopoulos AP (1998) Functional magnetic resonance imaging of mental rotation and memory scanning: a multidimensional scaling analysis of brain activation patterns. Brain Res Rev 26:106–112

    Article  PubMed  CAS  Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a pet study. J Neurophysiol 80:2162–2176

    PubMed  CAS  Google Scholar 

  • Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neuroscience 7:431–437

    Article  PubMed  CAS  Google Scholar 

  • Welchew DE, Honey GD, Sharma T, Robbins TW, Bullmore ET (2002) Multidimensional scaling of integrated neurocognitive function and schizophrenia as a disconnexion disorder. Neuroimage 17:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • Welchew DE, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, Bullmore E (2005) Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry 57:991–998

    Article  PubMed  Google Scholar 

  • Young FW, Harris DF (1990) Multidimensional scaling: procedure ALSCAL. In SPSS base system user’s guide. SPSS, Chicago, pp 397–461

    Google Scholar 

Download references

Acknowledgments

We thank Joshua Lynch for data preprocessing and Marc Coutanche for comments on the manuscript. This work was supported by US NIH grant NS32919, the US Department of Veterans Affairs, and the American Legion Chair in Brain Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos P. Georgopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzagarakis, C., Jerde, T.A., Lewis, S.M. et al. Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of fMRI patterns of activation. Exp Brain Res 194, 369–380 (2009). https://doi.org/10.1007/s00221-009-1709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1709-5

Keywords

Navigation