Skip to main content
Log in

Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Automatic adjustments of muscle activity throughout the body are required for the maintenance of balance during human walking. One mechanism that is likely to contribute to this control is the heteronymous spinal excitation between human ankle dorsiflexors and knee extensors (CPQ-reflex). Here, we investigated the CPQ-reflex at different walking speeds (1–6 km/h) and stride frequencies (0.6–1.3 Hz) in healthy human subjects to provide further evidence of its modulation, and its role in ensuring postural stability during walking. The CPQ-reflex was small or absent at walking speeds below 2–3 km/h, then increased with walking speeds about 3–4 km/h, and reached a plateau without any further change at walking speeds from 4 to 6 km/h. The reflex showed no modulation when the stride cycle was varied at constant speed (4 km/h; short steps versus long steps). These changes were unlikely to be only caused by changes in the background EMG activity and modifications in peripheral input, and likely reflected central modulation of transmission in the involved reflex pathways as well. It is suggested that the purpose of the reflex is to ensure knee stability at moderate-to-high walking speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berthoz A, Pozzo T (1994) Head and body coordination during locomotion and complex movements. In: Swinnenn S, Heuer H, Massion J, Casaer P (eds) Interlimb Coordination. Academic Press, San Diego, pp 14–165

    Google Scholar 

  • Brooke JD, McIlroy WE, Miklic M, Staines WR, Misiaszek JE, Peritore G, Angerilli P (1997) Modulation of H reflexes in human tibialis anterior muscle with passive movement. Brain Res 766:236–239

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Hagbarth KE, Löfstedt L (1978) Muscle spindle activity in man during shortening and lengthening contractions. J Physiol 277:131–142

    PubMed  CAS  Google Scholar 

  • Carroll TJ, Zehr EP, Collins DF (2005) Modulation of cutaneous reflexes in human upper limb muscles during arm cycling is independent of activity in the contralateral arm. Exp Brain Res 161:133–144

    Article  PubMed  Google Scholar 

  • Chaix Y, Marque P, Meunier S, Pierrot-Deseilligny E, Simonetta-Moreau M (1997) Further evidence for non-monosynaptic group I excitation of motoneurones in the human lower limb. Exp Brain Res 115:35–46

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Brooke JD, Misiaszek JE, Staines WR (1998) Crossed inhibition of the soleus H reflex during passive pedalling movement. Brain Res 779:280–284

    Article  PubMed  CAS  Google Scholar 

  • den Otter AR, Geurts AC, Mulder T, Duysens J (2004) Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture 19:270–278

    Article  Google Scholar 

  • Dietz V (2002) Do human bipeds use quadrupedal coordination? Trends Neurosci 25:462–467

    Article  PubMed  Google Scholar 

  • Dietz V, Fouad K, Bastiaanse CM (2001) Neuronal coordination of arm and leg movements during human locomotion. Eur J Neurosci 14:1906–1914

    Article  PubMed  CAS  Google Scholar 

  • England SA, Granata KP (2007) The influence of gait speed on local dynamic stability of walking. Gait Posture 25:172–178

    Article  PubMed  Google Scholar 

  • Frigon A, Collins DF, Zehr EP (2004) Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning. J Neurophysiol 91:1516–1523

    Article  PubMed  Google Scholar 

  • Garrett M, Kerr T, Caulfield B (1999) Phase-dependent inhibition of H-reflexes during walking in humans is independent of reduction in knee angular velocity. J Neurophysiol 82:747–753

    PubMed  CAS  Google Scholar 

  • Hirasaki E, Moore ST, Raphan T, Cohen B (1999) Effects of walking velocity on vertical head and body movements during locomotion. Exp Brain Res 127:117–130

    Article  PubMed  CAS  Google Scholar 

  • Holt KJ, Jeng SF, Ratcliffe R, Hamill J (1995) Energetic cost and stability during human walking at the preferred stride velocity. J Mot Behav 27:164–178

    Article  PubMed  Google Scholar 

  • Hultborn H (2002) Plateau potentials and their role in regulating motoneuronal firing. Adv Exp Med Biol 508:213–218

    PubMed  Google Scholar 

  • Inman VT, Ralston HJ, Todd F (1981) Human walking. Williams & Wilkins, Baltimore

    Google Scholar 

  • Jahn K, Strupp M, Schneider E, Dieterich M, Brandt T (2000) Differential effects of vestibular stimulation on walking and running. Neuroreport 11:1745–1748

    Article  PubMed  CAS  Google Scholar 

  • Jordan K, Challis JH, Newell KM (2007) Walking speed influences on gait cycle variability. Gait Posture 26:128–134

    Article  PubMed  Google Scholar 

  • Kiriyama K, Warabi T, Kato M, Yoshida T, Kobayashi N (2004) Progression of human body sway during successive walking studied by recording sole-floor reaction forces. Neurosci Lett 359:130–132

    Article  PubMed  CAS  Google Scholar 

  • Marchand-Pauvert V, Nielsen JB (2002a) Modulation of non-monosynaptic excitation from ankle dorsiflexor afferents to quadriceps motoneurones during human walking. J Physiol 538:647–657

    Article  PubMed  CAS  Google Scholar 

  • Marchand-Pauvert V, Nielsen JB (2002b) Modulation of spinal reflexes during walking in healthy subjects and patients with spinal cord injuries. Clin Neurophysiol 113(suppl.1):P4–01, S64–S130

    Google Scholar 

  • Marchand-Pauvert V, Simonetta-Moreau M, Pierrot-Deseilligny E (1999) Cortical control of spinal pathways mediating group II excitation to human thigh motoneurones. J Physiol 517:301–313

    Article  PubMed  CAS  Google Scholar 

  • Marchand-Pauvert V, Nicolas G, Burke D, Pierrot-Deseilligny E (2002) Suppression of the H reflex in humans by disynaptic autogenetic inhibitory pathways activated by the test volley. J Physiol 542:963–976

    Article  PubMed  CAS  Google Scholar 

  • Marchand-Pauvert V, Nicolas G, Marque P, Iglesias C, Pierrot-Deseilligny E (2005) Increase in group II excitation from ankle muscles to thigh motoneurones during human standing. J Physiol 566:257–271

    Article  PubMed  CAS  Google Scholar 

  • Marque P, Pierrot-Deseilligny E, Simonetta-Moreau M (1996) Evidence for excitation of the human lower limb motoneurones by group II muscle afferents. Exp Brain Res 109:357–360

    Article  PubMed  CAS  Google Scholar 

  • Masson G, Pailhous J (1994) Modulations of the optical flow did not induce locomotor pattern fluctuations in treadmill walking in man. Percept Mot Skills 78:755–767

    PubMed  CAS  Google Scholar 

  • Maupas E, Marque P, Roques CF, Simonetta-Moreau M (2004) Modulation of the transmission in group II heteronymous pathways by tizanidine in spastic hemiplegic patients. J Neurol Neurosurg Psychiatr 75:130–135

    PubMed  CAS  Google Scholar 

  • Meunier S, Pierrot-Deseilligny E, Simonetta M (1993) Pattern of monosynaptic heteronymous Ia connections in the human lower limb. Exp Brain Res 96:534–544

    Article  PubMed  CAS  Google Scholar 

  • Misiaszek JE, Cheng J, Brooke JD, Staines WR (1998) Movement-induced modulation of soleus H reflexes with altered length of biarticular muscles. Brain Res 795:25–36

    Article  PubMed  CAS  Google Scholar 

  • Nene A, Byrne C, Hermens H (2004) Is rectus femoris really a part of quadriceps? Assessment of rectus femoris function during gait in able-bodied adults. Gait Posture 20:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Kagamihara Y (1993) Differential projection of the sural nerve to early and late recruited human tibialis anterior motor units: change of recruitment gain. Acta Physiol Scand 147:385–401

    PubMed  CAS  Google Scholar 

  • Nielsen JB, Sinkjaer T (2002) Reflex excitation of muscles during human walking. Adv Exp Med Biol 508:369–375

    PubMed  Google Scholar 

  • Nilsson J, Thorstensson A (1987) Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Acta Physiol Scand 129:107–114

    PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord. University Press, Cambridge

    Google Scholar 

  • Remy-Neris O, Denys P, Daniel O, Barbeau H, Bussel B (2003) Effect of intrathecal clonidine on group I and group II oligosynaptic excitation in paraplegics. Exp Brain Res 148:509–514

    PubMed  CAS  Google Scholar 

  • Rohrle H, Scholten R, Sigolotto C, Sollbach W, Kellner H (1984) Joint forces in the human pelvis-leg skeleton during walking. J Biomech 17:409–424

    Article  PubMed  CAS  Google Scholar 

  • Simonetta-Moreau M, Marque P, Marchand-Pauvert V, Pierrot-Deseilligny E (1999) The pattern of excitation of human lower limb motoneurones by probable group II muscle afferents. J Physiol 517:287–300

    Article  PubMed  CAS  Google Scholar 

  • Stansfield BW, Nicol AC (2002) Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation. Clin Biomech 17:130–139

    Article  CAS  Google Scholar 

  • Thorstensson A, Nilsson J, Carlson H, Zomlefer MR (1984) Trunk movements in human locomotion. Acta Physiol Scand 121:9–22

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar RC, van Emmerik RE (2000) Resonant frequencies of arms and legs identify different walking patterns. J Biomech 33:853–861

    Article  PubMed  CAS  Google Scholar 

  • Waters RL, Lunsford BR, Perry J, Byrd R (1988) Energy-speed relationship of walking: standard tables. J Orthop Res 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Winter DA (1983) Biomechanical motor patterns in normal walking. J Mot Behav 15:302–330

    PubMed  CAS  Google Scholar 

  • Zehr EP, Collins DF, Frigon A, Hoogenboom N (2003) Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles. J Neurophysiol 89:12–21

    Article  PubMed  Google Scholar 

  • Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Thompson AK (2004a) Possible contributions of CPG activity to the control of rhythmic human arm movement. Can J Physiol Pharmacol 82:556–568

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Frigon A, Hoogenboom N, Collins DF (2004b) Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement. Exp Brain Res 159:382–388

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This collaboration received funds from Fondation NRJ—Institut de France, Fédération pour la Recherche sur le Cerveau (FRC), AP-HP, IRME and the Elsass Foundation. Caroline Iglesias was supported by a research grant from the University of Milan. The authors wish to express their gratitude to Dr. Max Westby for scrutinising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Marchand-Pauvert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias, C., Nielsen, J.B. & Marchand-Pauvert, V. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking. Exp Brain Res 188, 101–110 (2008). https://doi.org/10.1007/s00221-008-1344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1344-6

Keywords

Navigation