Skip to main content
Log in

Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Paired associative stimulation (PAS) can increase motor cortical excitability, possibly by long-term potentiation (LTP)-like mechanisms. As the capability of the cortex for plasticity decreases with age, we were interested here in testing interindividual variability and age-dependency of the PAS effect. Motor-evoked potentials (MEPs) were recorded from the resting right abductor pollicis brevis muscle before and for 30 min after PAS in 27 healthy subjects (22–71 years of age). PAS consisted of 225 pairs (rate, 0.25 Hz) of right median nerve stimulation followed at an interval equaling the individual N20-latency of the median nerve somatosensory-evoked cortical potential plus 2 ms by transcranial magnetic stimulation of the hand area of left primary motor cortex (PASN20+2). The PASN20+2-induced changes in MEP amplitude (ratio post PAS/pre PAS) were highly variable (1.00 ± 0.07, range 0.36–1.68). Fourteen subjects showed the expected LTP-like MEP increase (responders) while 13 subjects showed a long-term depression (LTD)-like MEP decrease (non-responders). Responders had a significantly lower resting motor threshold (RMT) and minimum stimulus intensity to elicit MEPs of 1 mV (MEP1 mV) than non-responders. RMT and MEP1 mV correlated significantly negatively with the PASN20+2 effect. The absolute PASN20+2 effect size irrespective of its direction decreased with age (= −0.57, = 0.002), i.e., LTP-like and LTD-like plasticity were large in young subjects but substantially smaller in elderly subjects. In conclusion, measures of motor cortical excitability (RMT, MEP1 mV) and age determine direction and magnitude of PAS effects in individual subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams I (1987) Plasticity of the synaptic contact zone following loss of synapses in the cerebral cortex of aging humans. Brain Res 424:343–351

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Zoli M, Grimaldi R, Fuxe K, Toffano G, Zini I (1990) Cellular and synaptic alterations in the aging brain. Aging (Milano) 2:5–25

    CAS  Google Scholar 

  • Bagnato S, Agostino R, Modugno N, Quartarone A, Berardelli A (2006) Plasticity of the motor cortex in Parkinson’s disease patients on and off therapy. Mov Disord 21:639–645

    Article  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Butefisch CM, Davis BC, Sawaki L, Waldvogel D, Classen J, Kopylev L, Cohen LG (2002) Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 51:59–68

    Article  PubMed  CAS  Google Scholar 

  • Butefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, Cohen LG (2000) Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci USA 97:3661–3665

    Article  PubMed  CAS  Google Scholar 

  • Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266

    Article  PubMed  CAS  Google Scholar 

  • Earles D, Vardaxis V, Koceja D (2001) Regulation of motor output between young and elderly subjects. Clin Neurophysiol 112:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Floel A, Breitenstein C, Hummel F, Celnik P, Gingert C, Sawaki L, Knecht S, Cohen LG (2005) Dopaminergic influences on formation of a motor memory. Ann Neurol 58:121–130

    Article  PubMed  Google Scholar 

  • Fratello F, Veniero D, Curcio G, Ferrara M, Marzano C, Moroni F, Pellicciari MC, Bertini M, Rossini PM, De Gennaro L (2006) Modulation of corticospinal excitability by paired associative stimulation: reproducibility of effects and intraindividual reliability. Clin Neurophysiol 117:2667–2674

    Article  PubMed  Google Scholar 

  • Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A (2002) Modulation of input–output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 113:1249–1257

    Article  PubMed  Google Scholar 

  • Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87–96

    Article  PubMed  CAS  Google Scholar 

  • Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390

    Article  PubMed  CAS  Google Scholar 

  • Keel JC, Smith MJ, Wassermann EM (2001) A safety screening questionnaire for transcranial magnetic stimulation. Clin Neurophysiol 112:720

    Article  PubMed  CAS  Google Scholar 

  • Kido A, Tanaka N, Stein RB (2004) Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol 82:238–248

    Article  PubMed  CAS  Google Scholar 

  • Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R, Cramer SC (2006) BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 9:735–737

    Article  PubMed  CAS  Google Scholar 

  • Kujirai K, Kujirai T, Sinkjaer T, Rothwell JC (2006) Associative plasticity in human motor cortex during voluntary muscle contraction. J Neurophysiol 96:1337–1346

    Article  PubMed  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133:425–430

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • McDonnell MN, Orekhov Y, Ziemann U (2007) Suppression of LTP-like plasticity in human motor cortex by the GABA(B) receptor agonist baclofen. Exp Brain Res 180:181–186

    Article  PubMed  CAS  Google Scholar 

  • Meintzschel F, Ziemann U (2006) Modification of practice-dependent plasticity in human motor cortex by neuromodulators. Cereb Cortex 16:1106–1115

    Article  PubMed  Google Scholar 

  • Meunier SO, Russmann H, Simonetta-Moreau M, Hallett M (2007) Changes in spinal excitability after PAS (paired associative stimulation). J Neurophysiol (in press)

  • Morgante F, Espay AJ, Gunraj C, Lang AE, Chen R (2006) Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 129:1059–1069

    Article  PubMed  Google Scholar 

  • Morita H, Shindo M, Yanagawa S, Yoshida T, Momoi H, Yanagisawa N (1995) Progressive decrease in heteronymous monosynaptic Ia facilitation with human ageing. Exp Brain Res 104:167–170

    Article  PubMed  CAS  Google Scholar 

  • Muller JF, Orekhov Y, Liu Y, Ziemann U (2007) Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation. Eur J Neurosci 25:3461–3468

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Oliviero A, Profice P, Tonali PA, Pilato F, Saturno E, Dileone M, Ranieri F, Di Lazzaro V (2006) Effects of aging on motor cortex excitability. Neurosci Res 55:74–77

    Article  PubMed  CAS  Google Scholar 

  • Peinemann A, Lehner C, Conrad B, Siebner HR (2001) Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neurosci Lett 313:33–36

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546:605–613

    Article  PubMed  CAS  Google Scholar 

  • Quartarone A, Bagnato S, Rizzo V, Siebner HR, Dattola V, Scalfari A, Morgante F, Battaglia F, Romano M, Girlanda P (2003) Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 126:2586–2596

    Article  PubMed  Google Scholar 

  • Quartarone A, Rizzo V, Bagnato S, Morgante F, Sant’angelo A, Girlanda P, Roman Siebner H (2006) Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans. J Physiol 575:657–670

    Article  PubMed  CAS  Google Scholar 

  • Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290:533–536

    Article  PubMed  CAS  Google Scholar 

  • Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP (1998) Strengthening of horizontal cortical connections following skill learning. Nat Neurosci 1:230–234

    Article  PubMed  CAS  Google Scholar 

  • Romanczyk TB, Weickert CS, Webster MJ, Herman MM, Akil M, Kleinman JE (2002) Alterations in trkB mRNA in the human prefrontal cortex throughout the lifespan. Eur J Neurosci 15:269–280

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz K, Rothwell JC (2006) Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. Eur J Neurosci 23:822–829

    Article  PubMed  Google Scholar 

  • Rosenkranz K, Williamon A, Rothwell JC (2007) Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J Neurosci 27:5200–5206

    Article  PubMed  CAS  Google Scholar 

  • Sale MV, Ridding MC, Nordstrom MA (2007) Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp Brain Res 181(4):615–626

    Article  PubMed  Google Scholar 

  • Sawaki L, Boroojerdi B, Kaelin-Lang A, Burstein AH, Butefisch CM, Kopylev L, Davis B, Cohen LG (2002) Cholinergic influences on use-dependent plasticity. J Neurophysiol 87:166–171

    PubMed  CAS  Google Scholar 

  • Sawaki L, Yaseen Z, Kopylev L, Cohen LG (2003) Age-dependent changes in the ability to encode a novel elementary motor memory. Ann Neurol 53:521–524

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708

    Article  PubMed  CAS  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123 (Pt 3):572–584

    Article  PubMed  Google Scholar 

  • Stefan K, Wycislo M, Classen J (2004) Modulation of associative human motor cortical plasticity by attention. J Neurophysiol 92:66–72

    Article  PubMed  Google Scholar 

  • Stefan K, Wycislo M, Gentner R, Schramm A, Naumann M, Reiners K, Classen J (2006) Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cereb Cortex 16:376–385

    Article  PubMed  Google Scholar 

  • Stinear JW, Hornby TG (2005) Stimulation-induced changes in lower limb corticomotor excitability during treadmill walking in humans. J Physiol 567:701–711

    Article  PubMed  CAS  Google Scholar 

  • Tecchio F, Zappasodi F, Pasqualetti P, Gennaro L, Pellicciari M, Ercolani M, Squitti R, Rossini P (2008) Age dependence of primary motor cortex plasticity induced by paired associative stimulation. Clin Neurophysiol 119(3):675–682. doi:10.1016/j.clinph.2007.10.023

    Article  PubMed  CAS  Google Scholar 

  • Ueki Y, Mima T, Kotb MA, Sawada H, Saiki H, Ikeda A, Begum T, Reza F, Nagamine T, Fukuyama H (2006) Altered plasticity of the human motor cortex in Parkinson’s disease. Ann Neurol 59:60–71

    Article  PubMed  Google Scholar 

  • Ward NS, Swayne OB, Newton JM (2007) Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol Aging (in press)

  • Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113:1165–1171

    Article  PubMed  Google Scholar 

  • Webster MJ, Herman MM, Kleinman JE, Shannon Weickert C (2006) BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns 6:941–951

    Article  PubMed  CAS  Google Scholar 

  • Weise D, Schramm A, Stefan K, Wolters A, Reiners K, Naumann M, Classen J (2006) The two sides of associative plasticity in writer’s cramp. Brain 129:2709–2721

    Article  PubMed  Google Scholar 

  • Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345

    Article  PubMed  Google Scholar 

  • Ziemann U, Corwell B, Cohen LG (1998) Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J Neurosci 18:1115–1123

    PubMed  CAS  Google Scholar 

  • Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24:1666–1672

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank B. Bliem for constructive comments on the manuscript. This work was supported by grant ZI 542/4-1 from the German Research Foundation (DFG). A similar study has been published during the review process on this manuscript (Tecchio et al. (2008) Clin Neurophysiol Jan 4 [Epub ahead of print]).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Florian M. Müller-Dahlhaus or Ulf Ziemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Dahlhaus, J.F.M., Orekhov, Y., Liu, Y. et al. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 187, 467–475 (2008). https://doi.org/10.1007/s00221-008-1319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1319-7

Keywords

Navigation