Skip to main content

Advertisement

Log in

FGF-2-induced functional improvement from neonatal motor cortex injury via corticospinal projections

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The administration of basic fibroblast growth factor (FGF-2) to rats with postnatal 10 (P10) motor cortex (MCx) lesions results in functional improvements accompanied with filling of the previously lesioned area with tissue. In the present experiment, we tested the prediction that FGF-2 induces functional recovery by promoting meaningful reconnection of neurons from the filled region to the periphery. Rats received bilateral MCx lesions on P10 and subcutaneous injections of either vehicle or FGF-2 for 7 days beginning on P11. In adulthood, we evaluated the physiology and anatomy of corticospinal projections using intracortical microstimulation together with recordings of evoked electromyographic (EMG) activity in wrist extensors, and anterogradely tracing projecting axons using biotin dextran amine. We found that activity could be induced in the wrist extensors following stimulation of the filled region with onset delays comparable to undamaged corticospinal tract fibers in 5 out of 7 lesioned, FGF-2 treated rats. Furthermore, in the rats in which EMG activity could be elicited, long descending axons were labeled with projections into the spinal cord comparable to corticospinal tracts from undamaged motor cortex. Our results demonstrate that FGF-2 treatment restores the connectivity of the filled region in neonatal rats. This provides a possible mechanism for FGF-2-induced functional recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Fouad K, Pedersen V, Schwab ME, Brosamle C (2001) Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol 11(22):1766–1770

    Article  PubMed  CAS  Google Scholar 

  • Ganat Y, Soni S, Chacon M, Schwartz ML, Vaccarino FM (2002) Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience 112(4):977–991

    Article  PubMed  CAS  Google Scholar 

  • Kolb B (1987) Recovery from early cortical damage in rats. I. Differential behavioral and anatomical effects of frontal lesions at different ages of neural maturation. Behav Brain Res 25(3):205–20

    Article  PubMed  CAS  Google Scholar 

  • Kolb B, Gibb R, Gorny G, Whishaw IQ (1998) Possible regeneration of rat medial frontal cortex following neonatal frontal lesions. Behav Brain Res 91(1–2):127–141

    Article  PubMed  CAS  Google Scholar 

  • Kolb B, Cioe J, Whishaw IQ (2000) Is there an optimal age for recovery from motor cortex lesions? I. Behavioural and anatomical sequelae of bilateral motor cortex lesions in rats on postnatal days 1, 10, and in adulthood. Brain Res 882:62–74

    Article  PubMed  CAS  Google Scholar 

  • Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17(15):5820–5829

    PubMed  CAS  Google Scholar 

  • Li B, DiCicco-Bloom E (2004) Basic fibroblast growth factor exhibits dual and rapid regulation of cyclin D1 and p27 to stimulate proliferation of rat cerebral cortical precursors. Dev Neurosci 26(2–4):197–207

    Article  PubMed  CAS  Google Scholar 

  • Liesi P, Kirkwood T, Vaheri A (1986) Fibronectin is expressed by astrocytes cultured from embryonic and early postnatal rat brain. Exp Cell Res 163(1):175–185

    Article  PubMed  CAS  Google Scholar 

  • Mahler M, Ben-Ari Y, Represa A (1997) Differential expression of fibronectin, tenascin-C and NCAMs in cultured hippocampal astrocytes activated by kainate, bacterial lipopolysaccharide or basic fibroblast growth factor. Brain Res 775(1–2):63–73

    Article  PubMed  CAS  Google Scholar 

  • Matsushima K, Schmidt-Kastner R, Hogan MJ, Hakim AM (1998) Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 807(1–2):47–60

    Article  PubMed  CAS  Google Scholar 

  • Matthiessen HP, Schmalenbach C, Muller HW (1989) Astroglia-released neurite growth-inducing activity for embryonic hippocampal neurons is associated with laminin bound in a sulfated complex and free fibronectin. Glia 2(3):177–178

    Article  PubMed  CAS  Google Scholar 

  • McFarlane S, McNeill L, Holt CE (1995) FGF signaling and target recognition in the developing Xenopus visual system. Neuron 15(5):1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Monfils MH, Driscoll I, Vandenberg PM, Thomas NJ, Danka D, Kleim JA, Kolb B (2005) Basic fibroblast growth factor stimulates functional recovery after neonatal lesions of motor cortex in rats. Neuroscience 134:1–8

    Article  PubMed  CAS  Google Scholar 

  • Monfils MH, Driscoll I, Melvin NR, Kolb B (2006a) Developmental expression of FGF-2 in the rat brain. Neuroscience 141(1):213–221

    Article  PubMed  CAS  Google Scholar 

  • Monfils MH, Driscoll I, Kamitakahara H, Wilson B, Flynn C, Teskey GC, Kleim JA, Kolb B (2006b) FGF-2-induced cell proliferation stimulates anatomical, neurophysiological, and functional recovery from neonatal motor cortex injury. Eur J Neurosci 24(3):739–749

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1985) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Raballo R, Rhee J, Lyn-Cook R, Leckman JF, Schwartz ML, Vaccarino FM (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20(13):5012–5023

    PubMed  CAS  Google Scholar 

  • Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2(4):263–273 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Ramirez JJ, Finklestein SP, Keller J, Abrams W, George MN, Parakh T (1999) Basic fibroblast growth factor enhances axonal sprouting after cortical injury in rats. Neuroreport 10(6):1201–1204

    Article  PubMed  CAS  Google Scholar 

  • Rowntree S, Kolb B (1997) Blockade of basic fibroblast growth factor retards recovery from motor cortex injury in rats. Eur J Neurosci 9(11):2432–2441

    Article  PubMed  CAS  Google Scholar 

  • Smith LK, Metz GA (2005) Dietary restriction alters fine motor function in rats. Physiol Behav 85(5):581–592

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Black IB, DiCicco-Bloom E (1996) Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). J Comp Neurol 376(4):653–663

    Article  PubMed  CAS  Google Scholar 

  • Wagner JP, Black IB, DiCicco-Bloom E (1999) Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 19(14):6006–6016

    PubMed  CAS  Google Scholar 

  • Whishaw IQ, Pellis SM, Gorny BP, Pellis VC (1991) The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav Brain Res 42(1):77–91

    Article  PubMed  CAS  Google Scholar 

  • Z’Graggen WJ, Metz GA, Kartje GL, Thallmair M, Schwab ME (1998) Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J Neurosci 18(12):4744–4757

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by CIHR grants to BK, AHFMR and NSERC scholarships to MHM, Neuroscience Canada and AHFMR scholarships to ID, and AHFMR and International Spinal Research Trust to KF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie H. Monfils.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monfils, M.H., Driscoll, I., Vavrek, R. et al. FGF-2-induced functional improvement from neonatal motor cortex injury via corticospinal projections. Exp Brain Res 185, 453–460 (2008). https://doi.org/10.1007/s00221-007-1172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1172-0

Keywords

Navigation