Skip to main content
Log in

Spectral receptive field properties of neurons in the feline superior colliculus

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The spatio-temporal frequency response profiles of 73 neurons located in the superficial, retino-recipient layers of the feline superior colliculus (SC) were investigated. The majority of the SC cells responded optimally to very low spatial frequencies with a mean of 0.1 cycles/degree (c/deg). The spatial resolution was also low with a mean of 0.31 c/deg. The spatial frequency tuning functions were either low-pass or band-pass with a mean spatial frequency bandwidth of 1.84 octaves. The cells responded optimally to a range of temporal frequencies between 0.74 cycles/s (c/s) and 26.41 c/s with a mean of 6.84 c/s. The majority (68%) of the SC cells showed band-pass temporal frequency tuning with a mean temporal frequency bandwidth of 2.4 octaves, while smaller proportions of the SC units displayed high-pass (19%), low-pass (8%) or broad-band (5%) temporal tuning. Most of the SC units exhibited simple spectral tuning with a single maximum in the spatio-temporal frequency domain, while some neurons were tuned for spatial or temporal frequencies or speed tuned. Further, we found cells excited by gratings moving at high temporal and low spatial frequencies and cells whose activity was suppressed by high velocity movement. The spatio-temporal filter properties of the SC neurons show close similarities to those of their retinal Y and W inputs as well as those of their inputs from the cortical visual motion detector areas, suggesting their common role in motion analysis and related behavioral actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramson BP, Chalupa LM (1988) Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat. J Comp Neurol 271:397–418

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination. J Physiol (Lond) 193:327–342

    CAS  Google Scholar 

  • Berardi N, Bisti S, Cattaneo A, Fiorentini A, Maffei L (1982) Correlation between the preferred orientation and spatial frequency of neurones in visual areas 17 and 18 of the cat. J Physiol (Lond) 323:603–618

    CAS  Google Scholar 

  • Bergeron A, Guitton D (2001) The superior colliculus and its control of fixation behavior via projections to brainstem omnipause neurons. Prog Brain Res 134:97–107

    PubMed  CAS  Google Scholar 

  • Bergeron A, Tardif E, Lepore F, Guillemot JP (1998) Spatial and temporal matching of receptive field properties of binocular cells in area 19 of the cat. Neuroscience 86:121–134

    Article  PubMed  CAS  Google Scholar 

  • Bishop PO, Kozak W, Vakkur GJ (1962) Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field coordinates and optics. J Physiol (Lond) 163:466–502

    CAS  Google Scholar 

  • Bisti S, Sireteanu RC (1976) Sensitivity to spatial frequency and contrast of visual cells in the cat superior colliculus. Vision Res 16:247–251

    Article  PubMed  CAS  Google Scholar 

  • Bisti S, Carmignoto G, Galli L, Maffei L (1985) Spatial-frequency characteristics of neurones of area 18 in the cat: dependence on the velocity of the visual stimulus. J Physiol (Lond) 359:259–268

    CAS  Google Scholar 

  • Burke W, Dreher B, Wang C (1998) Selective block of conduction in Y optic nerve fibres: significance for the concept of parallel processing. Eur J Neurosci 10:8–19

    Article  PubMed  CAS  Google Scholar 

  • Campbell FW, Cooper GF, Enroth-Cugell C (1969) The spatial selectivity of the visual cells of the cat. J Physiol (Lond) 203:223–235

    CAS  Google Scholar 

  • Casanova C (1993) Response properties of neurons in area 17 projecting to the striate-recipient zone of the cat’s lateralis posterior-pulvinar complex: comparison with cortico-tectal cells. Exp Brain Res 96:247–259

    Article  PubMed  CAS  Google Scholar 

  • Clifford CW, Ibbotson MR (2003) Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 68: 409–437

    Article  Google Scholar 

  • Crowder NA, Dawson MR, Wylie DR (2003) Temporal frequency and velocity-like tuning in the pigeon accessory optic system. J Neurophysiol 90:1829–1841

    Article  PubMed  Google Scholar 

  • Dec K, Waleszczyk WJ, Wróbel A, Harutiunian-Kozak BA (2001) The spatial substructure of visual receptive fields in the cat’s superior colliculus. Arch Ital Biol 139:337–355

    PubMed  CAS  Google Scholar 

  • Di Stefano M, Morrone MC, Burr DC (1985) Visual acuity of neurones in the cat lateral suprasylvian cortex. Brain Res 331:382–385

    Article  PubMed  CAS  Google Scholar 

  • Dreher B, Hoffmann KP (1973) Properties of excitatory and inhibitory regions in the receptive fields of single units in the cat’s superior colliculus. Exp Brain Res 16:333–353

    Article  PubMed  CAS  Google Scholar 

  • Dreher B, Michalski A, Ho RH, Lee CW, Burke W (1993) Processing form and motion in area 21a of cat visual cortex. Vis Neurosci 10:93–115

    PubMed  CAS  Google Scholar 

  • Eggers HM, Blakemore C (1978) Physiological basis of anisometropic amblyopia. Science 201:264–267

    Article  PubMed  CAS  Google Scholar 

  • Friend SM, Baker CL Jr (1993) Spatio-temporal frequency separability in area 18 neurons of the cat. Vision Res 33:1765–1771

    Article  PubMed  CAS  Google Scholar 

  • Guitton D, Munoz DP (1991) Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses. J Neurophysiol 66:1605–1623

    PubMed  CAS  Google Scholar 

  • Harman HH (1976) Modern factor analysis (revised), 3rd edn. University of Chicago Press, Chicago

  • Hashemi-Nezhad M, Wang C, Burke W, Dreher B (2003) Area 21a of cat visual cortex strongly modulates neuronal activities in the superior colliculus. J Physiol (Lond) 550:535–552

    Article  CAS  Google Scholar 

  • Hicks TP, Stark CA, Fletcher WA (1986) Origins of afferents to visual suprageniculate nucleus of the cat. J Comp Neurol 246:544–554

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann KP, Dreher B (1973) The spatial organisation of the excitatory region of receptive fields in the cat’s superior colliculus. Exp Brain Res 16:354–370

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann KP, Distler C (1989) Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey. J Neurophysiol 62:416–428

    PubMed  CAS  Google Scholar 

  • Ibbotson MR, Mark RF (1994) Wide-field nondirectional visual units in the pretectum: do they suppress ocular following of saccade-induced visual stimulation. J Neurophysiol 72:1448–1450

    PubMed  CAS  Google Scholar 

  • Ibbotson MR, Price NSC (2001) Spatiotemporal tuning of directional neurons in mammalian and avian pretectum: a comparison of physiological properties. J Neurophysiol 86:2621–2624

    PubMed  CAS  Google Scholar 

  • Ibbotson MR, Mark RF, Maddess TL (1994) Spatiotemporal response properties of direction-selective neurons in the nucleus of the optic tract and dorsal terminal nucleus of the wallaby, Macropus eugenii. J Neurophysiol 72:2927–2943

    PubMed  CAS  Google Scholar 

  • Katoh YY, Benedek G (1995) Organization of the colliculo-suprageniculate pathway in the cat: a wheat germ agglutinin-horseradish peroxidase study. J Comp Neurol 352:381–397

    Article  PubMed  CAS  Google Scholar 

  • Lünenburger L, Kleiser R, Stuphorn V, Miller LE, Hoffmann KP (2001) A possible role of the superior colliculus in eye-hand coordination. Prog Brain Res 134:109–125

    PubMed  Google Scholar 

  • Maffei L, Fiorentini A (1973) The visual cortex as a spatial frequency analyser. Vision Res 13:1255–1267

    Article  PubMed  CAS  Google Scholar 

  • Mendola JD, Payne BR (1993) Direction selectivity and physiological compensation in the superior colliculus following removal of areas 17 and 18. Vis Neurosci 10:1019–1026

    PubMed  CAS  Google Scholar 

  • Merabet L, Minville K, Ptito M, Casanova C (2000) Responses of neurons in the cat posteromedial lateral suprasylvian cortex to moving texture patterns. Neuroscience 97:611–623

    Article  PubMed  CAS  Google Scholar 

  • Mimeault D, Paquet V, Molotchnikoff S, Lepore F, Guillemot JP (2004) Disparity sensitivity in the superior colliculus of the cat. Brain Res 1010:87–94

    Article  PubMed  CAS  Google Scholar 

  • Minville K, Casanova C (1998) Spatial frequency processing in posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat’s lateral posterior-pulvinar complex. Neuroscience 84:699–711

    Article  PubMed  CAS  Google Scholar 

  • Morley JW, Vickery RM (1997) Spatial and temporal frequency selectivity of cells in area 21a of the cat. J Physiol (Lond) 501:405–413

    Article  CAS  Google Scholar 

  • Morrone MC, Di Stefano M, Burr DC (1986) Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. J Neurophysiol 56:969–986

    PubMed  CAS  Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978a) Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol (Lond) 283:53–77

    CAS  Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978b) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. J Physiol (Lond) 283:101–120

    CAS  Google Scholar 

  • Munoz DP, Guitton D (1991) Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. II. Sustained discharges during motor preparation and fixation. J Neurophysiol 66:1624–1641

    PubMed  CAS  Google Scholar 

  • Munoz DP, Wurtz RH (1993a) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70:559–575

    CAS  Google Scholar 

  • Munoz DP, Wurtz RH (1993b) Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J Neurophysiol 70:576–589

    CAS  Google Scholar 

  • Nagy A, Eördegh G, Benedek G (2003) Spatial and temporal visual properties of single neurons in the feline anterior ectosylvian visual area. Exp Brain Res 151:108–114

    Article  PubMed  Google Scholar 

  • Newsome WT, Gizzi MS, Movshon JA (1983) Spatial and temporal properties of neurons in macaque MT. Invest Opthalmol Vis Sci 24(suppl):106

    Google Scholar 

  • Norita M, Mucke L, Benedek G, Albowitz B, Katoh Y, Creutzfeldt OD. (1986) Connections of the anterior ectosylvian visual area (AEV). Exp Brain Res 62:225–240

    Article  PubMed  CAS  Google Scholar 

  • Norita M, Kase M, Hoshino K, Meguro R, Funaki S, Hirano S, McHaffie JG (1996) Extrinsic and intrinsic connections of the cat’s lateral suprasylvian visual area. Prog Brain Res 112:231–250

    PubMed  CAS  Google Scholar 

  • Ogasawara K, McHaffie JG, Stein BE (1984) Two visual corticotectal systems in cat. J Neurophysiol 52:1226–1245

    PubMed  CAS  Google Scholar 

  • Olson CR, Graybiel AM (1987) Ectosylvian visual area of the cat: location, retinotopic organization, and connections. J Comp Neurol 261:277–294

    Article  PubMed  CAS  Google Scholar 

  • Ouellette BG, Minville K, Faubert J, Casanova C (2004) Simple and complex visual motion response properties in the anterior medial bank of the lateral suprasylvian cortex. Neuroscience 123:231–245

    Article  PubMed  CAS  Google Scholar 

  • Peck CK, Baro JA (1997) Discharge patterns of neurons in the rostral superior colliculus of cat: activity related to fixation of visual and auditory targets. Exp Brain Res 113:291–302

    Article  PubMed  CAS  Google Scholar 

  • Perrone JA, Thiele A (2001) Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci 4:526–532

    PubMed  CAS  Google Scholar 

  • Perrone JA, Thiele A (2002) A model of speed tuning in MT neurons. Vision Res 42:1035–1051

    Article  PubMed  Google Scholar 

  • Pettigrew JD, Cooper ML, Blasdel GG (1979) Improved use of tapetal reflection for eye-position monitoring. Invest Ophthalmol Vis Sci 18:490–495

    PubMed  CAS  Google Scholar 

  • Pinter RB, Harris LR (1981) Temporal and spatial response characteristics of the cat superior colliculus. Brain Res 207:73–94

    Article  PubMed  CAS  Google Scholar 

  • Priebe NJ, Cassanello CR, Lisberger SG (2003) The neural representation of speed in macaque area MT/V5. J Neurosci 23:5650–5661

    PubMed  CAS  Google Scholar 

  • Priebe NJ, Lisberger SG, Movshon JA (2006) Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. J Neurosci 26:2941–2950

    Article  PubMed  CAS  Google Scholar 

  • Rodieck RW, Pettigrew JD, Bishop PO, Nikara T (1967) Residual eye movements in receptive-field studies of paralyzed cats. Vis Res 7:107–110

    Article  PubMed  CAS  Google Scholar 

  • Rowe MH, Cox JF (1993) Spatial receptive-field structure of cat retinal W cells. Vis Neurosci 10:765–779

    Article  PubMed  CAS  Google Scholar 

  • Saul AB, Humphrey AL (1990) Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J Neurophysiol 64:206–224

    PubMed  CAS  Google Scholar 

  • Saul AB, Humphrey AL (1992) Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis Neurosci 8:365–372

    PubMed  CAS  Google Scholar 

  • Schiller PH, Tehovnik EJ (2001) Look and see: how the brain moves your eyes about. Prog Brain Res 134:127–142

    PubMed  CAS  Google Scholar 

  • Schneider GE (1969) Two visual systems. Science 163:895–902

    Article  PubMed  CAS  Google Scholar 

  • Schoppmann A, Hoffmann KP (1979) A comparison of visual responses in two pretectal nuclei and in the superior colliculus of the cat. Exp Brain Res 35:495–510

    Article  PubMed  CAS  Google Scholar 

  • Sireteanu R, Hoffmann KP (1979) Relative frequency and visual resolution of X- and Y-cells in the LGN of normal and monocularly deprived cats: interlaminar differences. Exp Brain Res 34:591–603

    Article  PubMed  CAS  Google Scholar 

  • Sprague JM (1996) Neural mechanisms of visual orienting responses. Prog Brain Res 112:1–15

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1991) Functional organization of the superior colliculus. In: Leventhal AG (ed) The neural basis of visual function. In: Cronly-Dillon J (series ed) Vision and visual dysfunction, vol 4, Macmillan, London, pp 85–110

  • Stein BE, Jiang W, Wallace MT, Stanford TR (2001) Nonvisual influences on visual-information processing in the superior colliculus. Prog Brain Res 134:143–156

    PubMed  CAS  Google Scholar 

  • Sur M, Sherman SM (1982) Linear and nonlinear W-cells in C-laminae of the cat’s lateral geniculate nucleus. J Neurophysiol 47:869–884

    PubMed  CAS  Google Scholar 

  • Tardif E, Bergeron A, Lepore F, Guillemot JP (1996) Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat. Brain Res 716:219–223

    Article  PubMed  CAS  Google Scholar 

  • Tardif E, Richer L, Bergeron A, Lepore F, Guillemot JP (1997) Spatial resolution and contrast sensitivity of single neurons in area 19 of split-chiasm cats: a comparison with primary visual cortex. Eur J Neurosci 9:1929–1939

    Article  PubMed  CAS  Google Scholar 

  • Tardif E, Lepore F, Guillemot JP (2000) Spatial properties and direction selectivity of single neurons in area 21b of the cat. Neuroscience 97:625–634

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst DJ, Movshon JA (1975) Spatial and temporal contrast sensitivity of striate cortical neurones. Nature 257:674–675

    Article  PubMed  CAS  Google Scholar 

  • Waleszczyk WJ, Wang C, Burke W, Dreher B (1999) Velocity response profiles of collicular neurons: parallel and convergent visual information channels. Neuroscience 93:1063–1076

    Article  PubMed  CAS  Google Scholar 

  • Waleszczyk WJ, Nagy A, Eördegh G, Wypych M, Benedek G (2003a) Spatiotemporal frequency response profiles of single neurons in the cat’s superior colliculus. Acta Neurobiol Exp 63:255

    Google Scholar 

  • Waleszczyk WJ, Nagy A, Eördegh G, Wypych M, Benedek G (2003b) Speed tuned cells in feline superior colliculus. Acta Neurobiol Exp 63(suppl):85

    Google Scholar 

  • Waleszczyk WJ, Wang C, Benedek G, Burke W, Dreher B (2004) Motion sensitivity in cat’s superior colliculus: contribution of different visual processing channels to response properties of collicular neurons. Acta Neurobiol Exp 64:209–228

    Google Scholar 

  • Wang C, Waleszczyk WJ, Benedek G, Burke W, Dreher B (2001) Convergence of Y and non-Y channels onto single neurons in the superior colliculi of the cat. Neuroreport 12:2927–2933

    Article  PubMed  CAS  Google Scholar 

  • Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Annu Rev Neurosci 3:189–226

    Article  PubMed  CAS  Google Scholar 

  • Wylie DRW, Crowder NA (2000) The spatio-temporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons. J Neurophysiol 84:2529– 2540

    PubMed  CAS  Google Scholar 

  • Zumbroich TJ, Blakemore C (1987) Spatial and temporal selectivity in the suprasylvian visual cortex of the cat. J Neurosci 7:482–500

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Zita Márkus and Alice Roxin, medical students at Albert Szent-Györgyi Medical and Pharmaceutical Center, for their participation in some of the experiments described here, Gabriella Dósai for her skilful technical assistance, and Péter Liszli for computer programming. Thanks are due to Prof. Bogdan Dreher and the reviewers for their helpful comments on the manuscript. The work was supported financially by the Polish State Committee for Scientific Research grant no. 3P04C08222, Hungarian OTKA grant no. T042610 and ETT grant no. 429/2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Benedek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waleszczyk, W.J., Nagy, A., Wypych, M. et al. Spectral receptive field properties of neurons in the feline superior colliculus. Exp Brain Res 181, 87–98 (2007). https://doi.org/10.1007/s00221-007-0908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0908-1

Keywords

Navigation