Skip to main content
Log in

Functional differences between macaque prefrontal cortex and caudate nucleus during eye movements with and without reward

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The prefrontal cortex and the basal ganglia form mutually connected networks and are thought to play essential roles together in guiding goal-directed behaviors. Yet, these structures seem to have independent pathways to motor outputs as well, suggesting differential contributions to goal-directed behaviors. We hypothesized that the prefrontal cortex guides actions to a direction required by external demands and the basal ganglia guide actions to an internally motivated direction. To test this hypothesis, we used a task in which monkeys were required to make a memory-guided saccade to a direction indicated by a visual cue while only one direction was associated with reward. We observed a functional dissociation between the lateral prefrontal cortex (LPFC), which commonly represented the cue direction, and the caudate nucleus (CD), which commonly represented the reward-associated direction. Furthermore, cue-directed and reward-directed signals were integrated differently in the two areas; when the cue direction and the reward direction were opposite, LPFC neurons maintained tuning to the cue direction, whereas CD neurons lost the tuning. Different types of spatial tuning in the two brain areas may contribute to different types of goal-directed behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal”, and “limbic” functions. Prog Brain Res 85:119–146

    Article  PubMed  CAS  Google Scholar 

  • Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14:3969–3984

    PubMed  CAS  Google Scholar 

  • Aron AR, Sahakian BJ, Robbins TW (2003) Distractibility during selection-for-action: differential deficits in Huntington’s disease and following frontal lobe damage. Neuropsychologia 41:1137–1147

    Article  PubMed  Google Scholar 

  • Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans Syst Man Cybern 13:834–846

    Google Scholar 

  • Bowman EM, Aigner TG, Richmond BJ (1996) Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J Neurophysiol 75:1061–1073

    PubMed  CAS  Google Scholar 

  • Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111:323–345

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  PubMed  CAS  Google Scholar 

  • Carter SC, Macdonald AM, Botvinick M, Ross L, Stenger A, Noll D, Cohen JD (2000) Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci USA 47:1944–1948

    Article  Google Scholar 

  • Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosi 13:1071–1077

    Article  CAS  Google Scholar 

  • Denny-Brown D (1968) Clinical symptomatology of diseases of the basal ganglia. In: Vinken PJ, Bruyn GW (eds) Diseases of the basal ganglia. Amsterdam, North Holland, pp 133–172

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    PubMed  CAS  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Nauta WJ (1977) An intricately patterned prefronto-caudate projection in the rhesus monkey. J Comp Neurol 72:369–386

    Article  PubMed  CAS  Google Scholar 

  • Gruber AJ, Solla SA, Surmeier DJ, Houk JC (2003) Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol 90:1095–1114

    Article  PubMed  Google Scholar 

  • Herrnstein RJ (1961) Relative and absolute strength of response as a function of frequency of reinforcement. J Exp Anal Behav 4:267–272

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol 61:814–832

    PubMed  CAS  Google Scholar 

  • Jacobsen CF (1935) Functions of frontal association area in primates. Arch Neurol Psychiat 33:558–569

    Google Scholar 

  • Jahanshahi M, Rowe J, Saleem T, Brown RG, Limousin-Dowsey P, Rothwell JC, Thomas DG, Quinn NP (2002) Striatal contribution to cognition: working memory and executive function in Parkinson’s disease before and after unilateral posteroventral pallidotomy. J Cogn Neurosci 14:298–310

    Article  PubMed  CAS  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vis Res 20:535–538

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci 1:411–416

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Lauwereyns J, Koizumi M, Sakagami M, Hikosaka O (2002) Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. J Neurophysiol 87:1488–1498

    PubMed  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337–347

    PubMed  CAS  Google Scholar 

  • Lauwereyns J, Takikawa Y, Kawagoe R, Kobayashi S, Koizumi M, Coe B, Sakagami M, Hikosaka O (2002a) Feature-based anticipation of cues that predict reward in monkey caudate nucleus. Neuron 31:316–318

    Google Scholar 

  • Lauwereyns J, Watanabe K, Coe B, Hikosaka O (2002b) A neural correlate of response bias in monkey caudate nucleus. Nature 418:413–417

    Article  PubMed  CAS  Google Scholar 

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Progress Neurobiol 14:69–97

    Article  CAS  Google Scholar 

  • Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O (2004) Dopamine neurons can represent context-dependent prediction error. Neuron 41:269–280

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116:1159–1175

    Article  PubMed  Google Scholar 

  • Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87:256–259

    Article  PubMed  CAS  Google Scholar 

  • Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433:873–876

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413:67–70

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movements using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Romo R, Scarnati E, Schultz W (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. II. Movement-related activity in the anterior striatum. Exp Brain Res 91:385–395

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    PubMed  CAS  Google Scholar 

  • Schultz W, Romo R (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Exp Brain Res 91:363–384

    Article  PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  CAS  Google Scholar 

  • Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relations between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19

    Article  PubMed  CAS  Google Scholar 

  • Takikawa Y, Kawagoe R, Itoh H, Nakahara H, Hikosaka O (2002a) Modulation of saccadic eye movements by predicted reward outcome. Exp Brain Res 142:284–291

    Article  PubMed  Google Scholar 

  • Takikawa Y, Kawagoe R, Hikosaka O (2002b) Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. J Neurophysiol 87:508–515

    PubMed  Google Scholar 

  • Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 8:887–893

    Article  Google Scholar 

  • Watanabe K, Lauwereyns J, Hikosaka O (2003) Effects of motivational conflicts on visually elicited saccades in monkeys. Exp Brain Res 152:361–367

    Article  PubMed  Google Scholar 

  • Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292

    Google Scholar 

  • Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Makoto Kato and Brian Coe for designing the computer programs and Hideaki Itoh for helpful discussions. SK is supported by Japan Society for the Promotion of Science (JSPS) Research Fellowships for Young Scientists. MS is supported by Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Corporation (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, S., Kawagoe, R., Takikawa, Y. et al. Functional differences between macaque prefrontal cortex and caudate nucleus during eye movements with and without reward. Exp Brain Res 176, 341–355 (2007). https://doi.org/10.1007/s00221-006-0622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0622-4

Keywords

Navigation