Skip to main content
Log in

Phase-specific sensory representations in spinocerebellar activity during stepping: evidence for a hybrid kinematic/kinetic framework

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The dorsal spinocerebellar tract (DSCT) provides a major mossy fiber input to the spinocerebellum, which plays a significant role in the control of posture and locomotion. Recent work from our laboratory has provided evidence that DSCT neurons encode a global representation of hindlimb mechanics during passive limb movements. The framework that most successfully accounts for passive DSCT behavior is kinematics-based having the coordinates of the limb axis, limb-axis length and orientation. Here we examined the responses of DSCT neurons in decerebrate cats as they walked on a moving treadmill and compared them with the responses passive step-like movements of the hindlimb produced manually. We found that DSCT responses to active locomotion were quantitatively different from the responses to kinematically similar passive limb movements on the treadmill. The differences could not be simply accounted for by the difference in limb-axis kinematics in the two conditions, nor could they be accounted for by new or different response components. Instead, differences could be attributed to an increased relative prominence of specific response components occurring during the stance phase of active stepping, which may reflect a difference in the behavior of the sensory receptors and/or of the DSCT circuitry during active stepping. We propose from these results that DSCT neurons encode two global aspects of limb mechanics that are also important in controlling locomotion at the spinal level, namely the orientation angle of the limb axis and limb loading. Although limb-axis length seemed to be an independent predictor of DSCT activity during passive limb movements, we argue that it is not independent of limb loading, which is likely to be proportional to limb length under passive conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong DM, Apps R, Marple-Horvat DE (1997) Aspects of cerebellar function in relation to locomotor movements. Prog Brain Res 114:401–421

    PubMed  CAS  Google Scholar 

  • Arshavskii YI, Berkinblit MB, Gel’Fand IM, Orlovskii GN, Fukson OI (1972a) Activity of the neurones of the dorsal spino-cerebellar tract during locomotion. Biofizika 17:487–494References Arshavsky et al. 1972a has been changed to Arshavsky et al. 1972 and Arshavskii et al. 1972b, c has been changed to Arshavskii et al. 1972a, b. The following changes have been made both in the text and in the reference list. Author please check

    Google Scholar 

  • Arshavskii YI, Berkinblit MB, Gel’fand IM, Orlovskii GN, Fukson OI (1972b) Activity of the neurones of the ventral spino-cerebellar tract during locomotion of cats with deafferentated hind limbs. Biofizika 17:1112–1118

    Google Scholar 

  • Arshavsky YI, Berkinblit MB, Fukson OI, Gelfand IM, Orlovsky GN (1972) Recordings of neurones of the dorsal spinocerebellar tract during evoked locomotion. Brain Res 43:272–275

    Article  PubMed  CAS  Google Scholar 

  • Arshavsky YI, Deliagina TG, Orlovsky GN (1997) Pattern generation. Curr Opin Neurobiol 7:781–789

    Article  PubMed  CAS  Google Scholar 

  • Bennett DJ, De Serres SJ, Stein RB (1996) Regulation of soleus muscle spindle sensitivity in decerebrate and spinal cats during postural and locomotor activities. J Physiol. 495:835–850

    PubMed  CAS  Google Scholar 

  • Borghese NA, Bianchi L, Lacquaniti F (1996) Kinematic determinants of human locomotion. J Physiol 494:863–879

    PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE (2000) Reference frames for spinal proprioception: kinematics based or kinetics based? J Neurophysiol 83:2946–2955

    PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81:539–568

    PubMed  CAS  Google Scholar 

  • Bosco G, Poppele R (2003a) Cerebellar afferent systems: can they help us understand cerebellar function? Cerebellum 2:162–164

    Google Scholar 

  • Bosco G, Poppele RE (2003b) Modulation of dorsal spinocerebellar responses to limb movement II: effect of sensory input. J Neurophysiol 90:3372–3383

    Article  CAS  Google Scholar 

  • Bosco G, Rankin A, Poppele RE (1996) A representation of passive hindlimb postures in cat spinocerebellar activity. J Neurophysiol 76:715–726

    PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE, Eian J (2000) Reference frames for spinal proprioception: limb endpoint based or joint-level based? J Neurophysiol 83:2931–2945

    PubMed  CAS  Google Scholar 

  • Bosco G, Rankin A, Poppele RE (2003) Modulation of dorsal spinocerebellar responses to limb movement. I. Effect of serotonin. J Neurophysiol 90:3361–3371

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Eian J, Poppele RE (2005) Kinematic and non-kinematic signals transmitted to the cat cerebellum during passive treadmill stepping. Exp Brain Res 167:394–403

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3:781–790

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80:83–133

    PubMed  CAS  Google Scholar 

  • Grillner S (2002) The spinal locomotor CPG: a target after spinal cord injury. Prog Brain Res 137:97–108

    PubMed  Google Scholar 

  • Hiebert GW, Pearson KG (1999) Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate cat. J Neurophysiol 81:758–770

    PubMed  CAS  Google Scholar 

  • Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1996) Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol 75:1126–1137

    PubMed  CAS  Google Scholar 

  • Ivanenko YP, Grasso R, Macellari V, Lacquaniti F (1999) Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. J Neurophysiol 87:3070–3089

    Google Scholar 

  • Jankowska E, Krutki P, Matsuyama K (2005a) Relative contribution of la inhibitory interneurones to inhibition of feline contralateral motoneurones evoked via commissural interneurones. J Physiol 586(Pt 2):617–628

    Article  CAS  Google Scholar 

  • Jankowska E, Edgley SA, Krutki P, Hammar I (2005b) Functional differentiation and organization of feline midlumbar commissural interneurones. J Physiol 565(Pt 2):645–658

    Article  CAS  Google Scholar 

  • Lacquaniti F, Grasso R, Zago M (1999) Motor patterns in walking. News Physiol Sci 14:168–174

    PubMed  Google Scholar 

  • Lam T, Pearson KG (2001) Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. J Neurophysiol 86:1321–1332

    PubMed  CAS  Google Scholar 

  • Lomeli J, Quevedo J, Linares P, Rudomin P (1998) Local control of information flow in segmental and ascending collaterals of single afferents. Nature 395:600–604

    Article  PubMed  CAS  Google Scholar 

  • MacPherson JM (1988) Strategies that simplify the control of quadrupedal stance. I. Forces at the ground. J Neurophysiol 60:204–217

    PubMed  CAS  Google Scholar 

  • Mann MD (1973) Clarke’s column and the dorsal spinocerebellar tract: a review. Brain Behav Evol 7:34–83

    PubMed  CAS  Google Scholar 

  • Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184:81–106

    Article  PubMed  CAS  Google Scholar 

  • McCrea DA (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol 533(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Mori S, Shik ML, Yagodnitsyn AS (1977) Role of pontine tegmentum for locomotor control in mesencephalic cat. J Neurophysiol 40:284–295

    PubMed  CAS  Google Scholar 

  • Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1998) Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann N Y Acad Sci 860:94–105

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82:290–300

    PubMed  CAS  Google Scholar 

  • Mori S, Nakajima K, Mori F, Matsuyama K (2004) Integration of multiple motor segments for the elaboration of locomotion: role of the fastigial nucleus of the cerebellum. Prog Brain Res 143:341–351

    PubMed  Google Scholar 

  • Morton SM, Bastianu AJ (2004) Cerebellar control of balance and locomotion. Neuroscientist 10:247–259

    Article  PubMed  Google Scholar 

  • Murphy PR, Stein RB, Taylor J (1984) Phasic and tonic modulation of impulse rates in gamma-motoneurons during locomotion in premammillary cats. J Neurophysiol 52:228–243

    PubMed  CAS  Google Scholar 

  • Osborn CE, Poppele RE (1983) Cross-correlation analysis of the response of units of the dorsal spinocerebellar tract (DSCT) to muscle stretch and contraction. Brain Res 280:339-342

    Article  PubMed  CAS  Google Scholar 

  • Osborn CE, Poppele RE (1992) Parallel distributed network characteristics of the DSCT. J Neurophysiol 68:1100–1112

    PubMed  CAS  Google Scholar 

  • Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5:786–791

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    Article  PubMed  Google Scholar 

  • Poppele RE, Bosco G, Rankin AM (2002) Independent representations of limb-axis length and orientation in spinocerebellar response components. J Neurophysiol 87:409–422

    PubMed  CAS  Google Scholar 

  • Poppele RE, Rankin A, Eian J (2003) Dorsal spinocerebellar tract neurons respond to contralateral limb stepping. Exp Brain Res 149:361–370

    PubMed  CAS  Google Scholar 

  • Prochazka A, Hulliger M (1998) The continuing debate about CNS control of proprioception. J Physiol 1:513

    Google Scholar 

  • Prochazka A, Gillard D, Bennett DJ (1997) Positive force feedback control of muscles. J Neurophysiol 77:3226–3236

    PubMed  CAS  Google Scholar 

  • Rossignol S, Dubuc R (1994) Spinal pattern generation. Curr Opin Neurobiol 4:894–902

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P (1999) Presynaptic selection of afferent inflow in the spinal cord. J Physiol 93:329–347

    CAS  Google Scholar 

  • Sillar KT (1991) Spinal pattern generation and sensory gating mechanisms. Curr Opin Neurobiol 1:583–589

    Article  PubMed  CAS  Google Scholar 

  • Whelan PJ, Pearson KG (1997) Plasticity in reflex pathways controlling stepping in the cat. J Neurophysiol 78:1643–1650

    PubMed  CAS  Google Scholar 

  • Whelan PJ, Hiebert GW, Pearson KG (1995) Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp Brain Res 103:20–30

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson L (1990) The system for statistics. Evanston, IL, SYSTAT, Inc

Download references

Acknowledgements

This research was supported by a grant from the USPHS, NIH grant R01 NS21143. The authors thank Dr. M. S. Valle for help and assistance on this project, and Dr. J. Soechting for a critical reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Poppele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosco, G., Eian, J. & Poppele, R.E. Phase-specific sensory representations in spinocerebellar activity during stepping: evidence for a hybrid kinematic/kinetic framework. Exp Brain Res 175, 83–96 (2006). https://doi.org/10.1007/s00221-006-0530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0530-7

Keywords

Navigation