Skip to main content
Log in

Glyceraldehyde-3-phosphate dehydrogenase versus toluidine blue as a marker for infarct volume estimation following permanent middle cerebral artery occlusion in mice

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Infarct size is a good predictor of the neurological outcome following stroke. Estimation of infarct size in the early phase following experimental stroke depends on the availability of reliable techniques that can distinguish ischemic from nonischemic tissue. The objective of this study was to provide a simple and robust method for reliable delineation of the ischemic infarct area in fresh frozen cryosections from mice subjected to focal cerebral ischemia. Mice were subjected to permanent middle cerebral artery (MCA) occlusion and euthanised after 30 min, 1, 2, 4, 6, 12 and 24 h. The size of the developing infarct was compared in parallel series of sections in situ hybridized for mRNA encoding the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or stained with toluidine blue (TB). The infarct was clearly delineated in GAPDH mRNA in situ hybridized sections as soon as 4 h after MCA occlusion. Infarct size was similar at 4 and 6 h in GAPDH mRNA in situ hybridized sections. Sections hybridized for GAPDH mRNA showed significantly larger infarcts than sections stained with TB after 6 h but not after 24 h of ischemia. Analysis of in situ hybridized sections revealed changes in neuronal GAPDH mRNA in areas prone to undergo degeneration 30 min to 1 h after MCA occlusion, thereby preceding visible pycnosis in TB-stained sections. The results showed that in situ hybridization for GAPDH mRNA was a reliable method and superior to TB staining for precise infarct delineation prior to 6 h of permanent MCA occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altman FP (1976) Tetrazolium salts and formazans. Prog Histochem Cytochem 9:1–56

    PubMed  CAS  Google Scholar 

  • Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17:1304–1308

    PubMed  CAS  Google Scholar 

  • Berry MD (2004) Glyceraldehyde-3-phosphate dehydrogenase as a target for small-molecule disease-modifying therapies in human neurodegenerative disorders. J Psychiatr Neurosci 29:337–345

    Google Scholar 

  • Carlile GW, Chalmers-Redman RM, Tatton NA, Pong A, Borden KE, Tatton WG (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57:2–12

    PubMed  CAS  Google Scholar 

  • Chen RW, Saunders PA, Wei H, Li Z, Seth P, Chuang DM (1999) Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53. J Neurosci 19:9654–9662

    PubMed  CAS  Google Scholar 

  • Clausen BH, Lambertsen KL, Meldgaard M, Finsen B (2005) A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-1beta mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience 132:879–892

    Article  PubMed  CAS  Google Scholar 

  • Dastoor Z, Dreyer JL (2001) Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci 114:1643–1653

    PubMed  CAS  Google Scholar 

  • Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:53–65

    Article  PubMed  CAS  Google Scholar 

  • Hatfield RH, Mendelow AD, Perry RH, Alvarez LM, Modha P (1991) Triphenyltetrazolium chloride (TTC) as a marker for ischaemic changes in rat brain following permanent middle cerebral artery occlusion. Neuropathol Appl Neurobiol 17:61–67

    PubMed  CAS  Google Scholar 

  • Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66:928–935

    Article  PubMed  CAS  Google Scholar 

  • Ishitani R, Tajima H, Takata H, Tsuchiya K, Kuwae T, Yamada M, Takahashi H, Tatton NA, Katsube N (2003) Proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase: a possible site of action of antiapoptotic drugs. Prog Neuropsychopharmacol Biol Psychiatr 27:291–301

    Article  CAS  Google Scholar 

  • Ishitani R, Tanaka M, Sunaga K, Katsube N, Chuang DM (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol 53:701–707

    PubMed  CAS  Google Scholar 

  • Joshi CN, Jain SK, Murthy PS (2004) An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res Brain Res Protoc 13:11–17

    Article  PubMed  CAS  Google Scholar 

  • Kharlamov A, Kim DK, Jones SC (2001) Early visual changes in reflected light on non-stained brain sections after focal ischemia mirror the area of ischemic damage. J Neurosci Methods 111:67–73

    Article  PubMed  CAS  Google Scholar 

  • Kloss CU, Thomassen N, Fesl G, Martens KH, Yousri TA, Hamann GF (2002) Tissue-saving infarct volumetry using histochemistry validated by MRI in rat focal ischemia. Neurol Res 24:713–718

    Article  PubMed  Google Scholar 

  • Lambertsen KL, Gregersen R, Drojdahl N, Owens T, Finsen B (2001) A specific and sensitive method for visualization of tumor necrosis factor in the murine central nervous system. Brain Res Brain Res Protoc 7:175–191

    Article  PubMed  CAS  Google Scholar 

  • Lambertsen KL, Meldgaard M, Ladeby R, Finsen B (2005) A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:119–135

    Article  PubMed  CAS  Google Scholar 

  • Liszczak TM, Hedley-Whyte ET, Adams JF, Han DH, Kolluri VS, Vacanti FX, Heros RC, Zervas NT (1984) Limitations of tetrazolium salts in delineating infarcted brain. Acta Neuropathol (Berl) 65:150–157

    Article  CAS  Google Scholar 

  • Moller A, Christophersen P, Drejer J, Axelsson O, Peters D, Jensen LH, Nielsen EO (1995) Pharmacological profile and anti-ischemic properties of the Ca(2+)-channel blocker NS-638. Neurol Res 17:353–360

    PubMed  CAS  Google Scholar 

  • Mulcahy NJ, Ross J, Rothwell NJ, Loddick SA (2003) Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischaemia in the rat. Br J Pharmacol 140:471–476

    Article  PubMed  CAS  Google Scholar 

  • Osborne KA, Shigeno T, Balarsky AM, Ford I, McCulloch J, Teasdale GM, Graham DI (1987) Quantitative assessment of early brain damage in a rat model of focal cerebral ischaemia. J Neurol Neurosurg Psychiatr 50:402–410

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew LC, Holtz ML, Craddock SD, Minger SL, Hall N, Geddes JW (1996) Microtubular proteolysis in focal cerebral ischemia. J Cereb Blood Flow Metab 16:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Relton JK, Martin D, Thompson RC, Russell DA (1996) Peripheral administration of Interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol 138:206–213

    Article  PubMed  CAS  Google Scholar 

  • Saunders PA, Chalecka-Franaszek E, Chuang DM (1997) Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis. J Neurochem 69:1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Sawa A, Khan AA, Hester LD, Snyder SH (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94:11669–11674

    Article  PubMed  CAS  Google Scholar 

  • Shashidharan P, Chalmers-Redman RM, Carlile GW, Rodic V, Gurvich N, Yuen T, Tatton WG, Sealfon SC (1999) Nuclear translocation of GAPDH-GFP fusion protein during apoptosis. Neuroreport 10:1149–1153

    PubMed  CAS  Google Scholar 

  • Sirover MA (1997) Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem 66:133–140

    Article  PubMed  CAS  Google Scholar 

  • Sirover MA (1999) New insight into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432:159–184

    PubMed  CAS  Google Scholar 

  • Tanaka R, Mochizuki H, Suzuki A, Katsube N, Ishitani R, Mizuno Y, Urabe T (2002) Induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in rat brain after focal ischemia/reperfusion. J Cereb Blood Flow Metab 22:280–288

    Article  PubMed  CAS  Google Scholar 

  • Taylor R, Luk YO, Chen ST, Balentine JD, Hogan EL, Hsu CY, Charleston SC (1987) Quantification of infarct area by triphenyltetrazolium chloride in a rat model. Neurology 37:82

    PubMed  Google Scholar 

  • Vogel J, Mobius C, Kuschinsky W (1999) Early delineation of ischemic tissue in rat brain cryosections by high-contrast staining. Stroke 30:1134–1141

    PubMed  CAS  Google Scholar 

  • Xu KY, Zweier JL, Becker LC (1995) Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ Res 77:88–97

    PubMed  CAS  Google Scholar 

  • Zivin JA (1998) Factors determining the therapeutic window for stroke. Neurology 50:599–603

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Health Sciences, University of Southern Denmark - Odense, The Novo Nordic Foundation, the Hede Nielsen Foundation, The Danish MRC, and The Lundbeck Foundation. We greatly acknowledge the excellent technical assistance supported by Susanne Petersen, Inger Margrethe Rasmussen, Lene Jørgensen, Margrethe Krog, and the Laboratory of Biomedicine, University of Southern Denmark, Odense, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina H. Clausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clausen, B.H., Lambertsen, K.L. & Finsen, B. Glyceraldehyde-3-phosphate dehydrogenase versus toluidine blue as a marker for infarct volume estimation following permanent middle cerebral artery occlusion in mice. Exp Brain Res 175, 60–67 (2006). https://doi.org/10.1007/s00221-006-0526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0526-3

Keywords

Navigation