Skip to main content
Log in

Spatial attention: more than intrinsic alerting?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It has been proposed that the right hemisphere alerting network co-activates, either directly or via the brainstem, the attention system in the parietal cortex involved in spatial attention. The observation that impaired alertness and sustained attention can predict the outcome of neglect might suggest such a relationship, too. In the present fMRI study, we intended to analyse and compare the functional anatomy of two attentional conditions both involving intrinsic (endogenous) alerting and fixation but differing with respect to the degree of spatially distributed attention by using the same paradigm under two different attentional conditions. In a group of ten participants, both a focused and a distributed visuospatial attention condition evoked similar patterns of activation in dorsolateral prefrontal regions, in the anterior cingulate gyrus, in the superior and inferior parietal cortex as well as in the superior temporal gyrus and in the thalamus. These activation foci were stronger in the right hemisphere under both conditions. After subtraction of the alertness condition with focused spatial attention, distributed spatial attention with stimuli appearing at unpredictable locations within both visual fields induced additional bilateral activations only in the left and right superior parietal cortex and in the right precuneus suggesting that these regions are specific for a more widespread dispersion of spatial attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapping 7:254–266

    Article  CAS  Google Scholar 

  • Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations:identical, independent, or overlapping neural systems?. Proc Nat Acad Sci USA 95:831–838

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226

    PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL, Miezin FM, Petersen SE (1995) Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270:802–805

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Frith CD, Frackowiak RS, Grasby PM (1997) A fronto-parietal network for rapid visual information processing:a PET study of sustained attention and working memory. Neuropsychologia 34:1085–1095

    Article  Google Scholar 

  • Coull JT, Nobre AC, Frith CD (2001) The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cerebr Cortex 11:73–84

    Article  CAS  Google Scholar 

  • Fernandez-Duque D, Posner MI (1997) Relating the mechanisms of orienting and alerting. Neuropsychologia 35:477–486

    Article  PubMed  CAS  Google Scholar 

  • Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, Ziemons K, Zilles K, Freund HJ (2000) Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fmri. Neurol 54:1324–1331

    CAS  Google Scholar 

  • Friston KJ, Jezzard P (1994) Analysis of functional MRI time-series. Hum Brain Map 1:153–171

    Article  Google Scholar 

  • Friston KJ, Frith CD, Turner R, Frackowiak RS (1995a) Characterizing evoked hemodynamics with fmri. NeuroImage 2:157–165

    Article  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995b) Analysis of fmri time-series revisited. NeuroImage 2:45–53

    Article  CAS  Google Scholar 

  • Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fmri: levels of inference and power. NeuroImage 4:223–235

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? NeuroImage 10:1–5

    Article  PubMed  CAS  Google Scholar 

  • Heinze HJ Mangun GR, Burchert W, Hinrichs H, Scholz M, Münte TF, Gös A, Scherg M, Johannes S, Hundeshagen H, Gazzaniga MS, Hillyard SA (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Article  Google Scholar 

  • Hjaltason H, Tegner R, Tham K, Levander M, Ericson K (1996) Sustained attention and awareness of disability in chronic neglect. Neuropsychologia 34:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Howes D, Boller F (1975) Simple reaction time:evidence for focal impairment from lesions of the right hemisphere. Brain 98:317–332

    Article  PubMed  CAS  Google Scholar 

  • Karnath HO (1997) Spatial orientation and the representation of space with parietal lobe lesions. Philos Trans R Soc Lond B Biol Sci 352:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage 9:269–277

    Article  PubMed  CAS  Google Scholar 

  • Kincade JM, Abrams RA, Astafiev SV, Shulman GA, Corbetta M (2005) An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci 25:4593–4604

    Article  PubMed  CAS  Google Scholar 

  • Kinomura S, Larsson J, Gulyas B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515

    Article  PubMed  CAS  Google Scholar 

  • Kinsbourne M (1983) Orientational bias model of unilateral neglect: evidence from attentional gradients within hemispace. In: Robertson IH, Marshall JC (eds) Unilateral neglect: clinical and experimental studies. Lawrence Erlbaum, Hillsdale, pp 63–86

    Google Scholar 

  • LaBerge D Buchsbaum MS (1990) Positron emission tomographic measurements of pulvinar activity during an attention task. J Neurosci 10:613–619

    Google Scholar 

  • Ladavas E (1987) Is the hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates?. Brain 110:167–180

    Article  PubMed  Google Scholar 

  • Law I, Svarer C, Holm S, Paulson OB (1997) The activation pattern in normal humans during suppression, imagination and performance of saccadic eye movements. Acta Physiol Scand 161:419–434

    Article  PubMed  CAS  Google Scholar 

  • Luks TL, Simpson GV, Feiwell RJ, Miller WL (2002) Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. Neuroimage 17:792–802

    Article  PubMed  Google Scholar 

  • Murtha S, Beauregard M, Dixon R, Evans A (1996) Hypotheses about the role of the anterior cortex (ACC). Human Brain Mapping 4:103–112

    Article  Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120:515–533

    Article  PubMed  Google Scholar 

  • Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides ME, vans A (1997) Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 9:392–408

    Article  Google Scholar 

  • Paus T, Koski L, Caramanos Z, Westbury C (1998) Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. NeuroReport 9:R37–R47

    Article  PubMed  CAS  Google Scholar 

  • Pessoa L, Kastner S, Ungerleider LG (2003) Neuroimaging studies of attention: From modulation of sensory processing to top-down control. J Neurosci 23:3990–3998

    PubMed  CAS  Google Scholar 

  • Petit L, Tzourio N, Orssaud C, Pietrzyk U, Berthoz A, Mazoyer B (1995) Functional neuroanatomy of the human visual fixation system. Eur J Neurosci 7:169–174

    Article  PubMed  CAS  Google Scholar 

  • Posner MI (1975) The psychobiology of attention. In: Gazzaniga M, Blakemore C (eds) Handbook of psychobiology. Academic, New York, pp 441–480

    Google Scholar 

  • Posner MI (1978) Chronometric explorations of mind. Erlbaum, Hillsdale

    Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13:25–42

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4:1863–1874

    PubMed  CAS  Google Scholar 

  • Posner MI, Inhoff AW, Friedrich FJ (1987) Isolating attentional systems: a cognitive-anatomical analysis. Psychobiol 15:107–121

    Google Scholar 

  • Rizzolatti G, Riggio L, Dascola I, Umilta C (1987) Reorienting attention across the horizontal and vertiocal meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 24:31–40

    Article  Google Scholar 

  • Robertson IH (1993) The relationship between lateralised and nonlateralised attentional deficits in unilateral neglect. In: Robertson IH, Marshall JC (eds) Unilateral neglect: clinical and experimental studies. Lawrence Erlbaum Associates, Hove, pp 257–278

    Google Scholar 

  • Robertson I, Frasca R (1992) Attentional load and visual neglect. Int J Neurosci 62:45–56

    Article  PubMed  CAS  Google Scholar 

  • Robertson IH, Tegner R, Tham K, Lo A, Nimmo-Smith I (1995) Sustained attention training for unilateral neglect: theoretical and rehabilitation implications. J Clin Exp Neuropsychol 17:416–430

    Article  PubMed  CAS  Google Scholar 

  • Robertson IH, Manly T, Beschin N, Daini R, Haeske-Dewick H, Homberg V, Jehkonen M, Pizzamiglio G, Shiel A, Weber E (1997a) Auditory sustained attention is a marker of unilateral spatial neglect. Neuropsychologia 35:1527–1532

    Article  CAS  Google Scholar 

  • Robertson IH, Ridgeway V, Greenfield E, Parr A (1997b) Motor recovery after stroke depends on intact sustained attention: a 2-year follow-up study. Neuropsychology 11:290–295

    Article  CAS  Google Scholar 

  • Robertson IH, Mattingley JB, Rorden C, Driver J (1998) Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395:169–172

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG (1985) Lateralized behavioral and neurochemical consequences of unilateral brain injury in rats. In: Glick SG (eds) Cerebral lateralization in nonhuman species. Academic, Orlando, pp 135–156

    Google Scholar 

  • Robinson RG, Coyle JT (1980) The differential effect of right versus left hemispheric cerebral infarction on catecholamines and behavior in the rat. Brain Res 188:63–78

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson H, Hjelmquist EK, Jensen C, Ekholm S, Blomstrand C (1998) Nonlateralized attentional deficits: an important component behind persisting visuospatial neglect? J Clin Exp Neuropsychol 20:73–88

    Article  PubMed  CAS  Google Scholar 

  • Sturm W, Willmes K (2001) On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14:76–84

    Article  Google Scholar 

  • Sturm W, de Simone A, Krause BJ, Specht K, Hesselmann V, Radermacher I, Herzog H, Tellmann L, Muller-Gartner HW, Willmes K (1999) Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia 37:797–805

    Article  PubMed  CAS  Google Scholar 

  • Sturm W, Longoni F, Fimm B, Dietrich T, Weis S, Kemna S, Herzog H, Willmes K (2004). Network for auditory intrinsic alertness: a PET study. Neuropsychologia 42:563–568

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Thiel CM, Zilles K, Fink GR (2004) Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. Neuroimage 21:318–328

    Article  PubMed  Google Scholar 

  • Vallar G (1993) The anatomical basis of spatial hemineglect in humans. In: Robertson IH, Marshall JC (eds) Unilateral neglect: clinical and experimental studies. Lawrence Erlbaum Associates, Hove, pp 27–62

    Google Scholar 

  • Vallar G, Perani D (1986) The anatomy of unilateral neglect after right-hemisphere stroke lesions A clinical/CT-scan correlation study in man. Neuropsychologia 24:609–622

    Article  PubMed  CAS  Google Scholar 

  • Vandenberghe R, Dupont P, De Bruyn B, Bormans G, Michiels J, Mortelmans L, Orban GA (1996) The influence of stimulus location on the brain activation pattern in detection and orientation discrimination A PET study of visual attention. Brain 119:1263–1276

    Article  PubMed  Google Scholar 

  • Vandenberghe R, Duncan J, Dupont P, Ward R, Poline JB, Bormans G, Michiels J, Mortelmans L (1997) Attention to one or two features in left or right visual field: a positron emission tomography study. J Neurosci 17:3739–3750

    PubMed  CAS  Google Scholar 

  • Whitehead R (1991) Right hemisphere processing superiority during sustained visual attention. J Cogn Neurosci 3:329–335

    Article  Google Scholar 

  • Worsley K J, Friston K J (1995) Analysis of fMRI time-series revisited–again. Neuroimage 2:173–181

    Article  PubMed  CAS  Google Scholar 

  • Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, Courtney SM (2002) Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Fimm B (1997) Handbuch der Testbatterie zur Aufmerksamkeitsprüfung. Psytest, Freiburg

    Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from the Medical Faculty of the RWTH Aachen University within the Interdisciplinary Clinical Research Center “CNS”. We thank Stephan Erberich and Manou Liebert for assistance with data acquisition, image data processing and statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Sturm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturm, W., Schmenk, B., Fimm, B. et al. Spatial attention: more than intrinsic alerting?. Exp Brain Res 171, 16–25 (2006). https://doi.org/10.1007/s00221-005-0253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0253-1

Keywords

Navigation