Skip to main content
Log in

A direct comparison of local dynamic stability during unperturbed standing and walking

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Standing and walking are very different tasks. It might be reasonable, therefore, to assume that the mechanisms used to maintain the stability of standing and walking should be quite different. However, many studies have shown that postural stability measures can generally predict risk of falls, even though most falls occur during locomotor tasks and not during postural tasks. This suggests that there is at least some commonality among the mechanisms governing the control of both standing and walking. The present study was conducted to determine whether the postural stability either is or is not directly related to locomotor stability. Twenty healthy adults, age 18–73 years, walked on a motorized treadmill at their preferred walking speed for three trials of 5 min. They also stood on a force plate for three trials of 5 min. Both tasks were performed without imposing any additional external perturbations. The motion of each subject’s trunk segment was recorded and described using a multi-dimensional state space defined in the same manner for both tasks. Local dynamic stability was quantified from the mean divergence over time of locally perturbed trajectories in state space, which was parameterized as a double exponential process. Divergence parameters were compared to determine the relationship between local dynamic stability during standing and walking. Standing and walking exhibited local dynamic stability properties that were significantly different (P<0.001) and not correlated (P>0.1). Divergence parameters were also compared to traditional center of pressure (COP) measures obtained from standing trials. COP measures were significantly correlated to local divergence parameters for standing, but not to those for walking. This study provides direct evidence that the mechanisms governing standing and walking stability are significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander NB, Shepard N, Gu MJ, Schultz A (1992) Postural control in young and elderly adults when stance is perturbed: kinematics. J Gerontol A Biol Sci Med Sci 47:M79–M87

    CAS  Google Scholar 

  • Bauby CE, Kuo AD (2000) Active Control of Lateral Balance in Human Walking. J Biomech 33:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Bertram JEA, Ruina A (2001) Multiple walking speed–frequency relations are predicted by constrained optimization. J Theor Biol 209:445–453

    Article  PubMed  CAS  Google Scholar 

  • Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH, Bassey EJ (1988) Falls by elderly people at home: prevalence and associated factors. Age Ageing 17:365–372

    Article  PubMed  CAS  Google Scholar 

  • Brach JS, Berthold R, Craik R, VanSwearingen JM, Newman AB (2001) Gait variability in community-dwelling older adults. J Am Geriatr Soc 49:1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Brauer SG, Burns YR, Galley P (2000) A prospective study of laboratory and clinical measures of postural stability to predict community-dwelling fallers. J Gerontol A Biol Sci Med Sci 55:M469–M476

    PubMed  CAS  Google Scholar 

  • Brown LA, Shumway-Cook A, Woollacott MH (1999) Attentional demands and postural recovery: the effects of aging. J Gerontol A Biol Sci Med Sci 54:M165–M171

    PubMed  CAS  Google Scholar 

  • Carpenter MG, Frank JS, Winter DA, Peysar GW (2001) Sampling duration effects on centre of pressure summary measures. Gait Posture 13:35–40

    Article  PubMed  CAS  Google Scholar 

  • Coleman M, Ruina A (1998) An uncontrolled walking toy that cannot stand still. Phys Rev Lett 80:3658–3661

    Article  CAS  Google Scholar 

  • Coleman M, Garcia M, Mombaur K, Ruina A (2001) Prediction of stable walking for a toy that cannot stand. Phys Rev E: Stat Phys 64:022901

    Article  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318

    Article  PubMed  CAS  Google Scholar 

  • Corbeil P, Blouin JS, Begin F, Nougier V, Teasdale N (2003) Perturbation of the postural control system induced by muscular fatigue. Gait Posture 18:92–100

    Article  PubMed  Google Scholar 

  • Cromwell RL, Newton RA (2004) Relationship between balance and gait stability in healthy older adults. J Aging Phys Act 12:90–100

    PubMed  Google Scholar 

  • Dennis RJ (1999) Functional reach improvement in normal older women after Alexander Technique instruction. J Gerontol A Biol Sci Med Sci 54:M8–M11

    PubMed  Google Scholar 

  • Dingwell JB, Cusumano JP (2000) Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863

    Article  PubMed  Google Scholar 

  • Dingwell JB, Marin LC (2006) Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech 39:444–452

    PubMed  Google Scholar 

  • Dingwell JB, Cusumano JP, Sternad D, Cavanagh PR (2000) Slower speeds in neuropathic patients lead to improved local dynamic stability of continuous overground walking. J Biomech 33:1269–1277

    Article  PubMed  CAS  Google Scholar 

  • Dingwell JB, Cusumano JP, Sternad D, Cavanagh PR (2001) Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng 123:27–32

    Article  PubMed  CAS  Google Scholar 

  • Duarte M, Zatsiorsky VM (2001) Long-range correlations in human standing. Phys Lett A 283:124–128

    Article  CAS  Google Scholar 

  • Duarte M, Harvey W, Zatsiorsky VM (2000) Stabilographic analysis of unconstrained standing. Ergonomics 43:1824–1839

    Article  PubMed  CAS  Google Scholar 

  • Duncan PW, Weiner DK, Chandler J, Studenski S (1990) Functional reach: a new clinical measure of balance. J Gerontol 45:M192–M197

    PubMed  CAS  Google Scholar 

  • Duncan PW, Studenski S, Chandler J, Prescott B (1992) Functional reach: predictive validity in a sample of elderly male veterans. J Gerontol 47:M93–M98

    PubMed  CAS  Google Scholar 

  • Enoka R (1994) Neuromechanical basis of kinesiology. Human Kinetics, Champaign, IL

    Google Scholar 

  • Fernie GR, Gryfe CI, Holliday PJ, Llewellyn A (1982) The relationship of postural sway in standing to the incidence of falls in geriatric subjects. Age Ageing 11:11–16

    Article  PubMed  CAS  Google Scholar 

  • Full RJ, Kubow T, Schmitt J, Holmes P, Koditschek DE (2002) Quantifying dynamic stability and maneuverability in legged locomotion. Integr Comp Biol 42:149–157

    Article  Google Scholar 

  • Gabel A, Nayak USL (1984) The effect of age on variability in gait. J Gerontol 39:662–666

    PubMed  Google Scholar 

  • Goldstein H, Poole CP, Safko JL (2001) Classical mechanics. Addison-Wesley, Benjamin Cummings, Reading

  • Greenwood DT (1988) Principles of dynamics. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  PubMed  CAS  Google Scholar 

  • Hausdorff JM, Ashkenazy Y, Peng CK, Ivanov PC, Stanley HE, Goldberger AL (2001) When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A 302:138–147

    Article  PubMed  CAS  Google Scholar 

  • Hof AL, Gazendam MGJ, Sinke WE (2005) The condition for dynamic stability. J Biomech 38:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hornbrook MC, Stevens VJ, Wingfield DJ, Hollis JF, Greenlick MR, Ory MG (1994) Preventing falls among community-dwelling older persons: results from a randomized trial. Gerontologist 34:16–23

    Article  PubMed  CAS  Google Scholar 

  • Jeka J, Kiemel T, Creath R, Horak F, Peterka R (2004) Controlling human upright posture: velocity information is more accurate than position or acceleration. J Neurophysiol 92:2368–2379

    Article  PubMed  Google Scholar 

  • Jensen JL, Brown LA, Woollacott MH (2001) Compensatory stepping: the biomechanics of a preferred response among older adults. Exp Aging Res 27:361–376

    Article  PubMed  CAS  Google Scholar 

  • Kantz H, Schreiber S (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • King MB, Judge JO, Wolfson L (1994) Functional base of support decreases with age. J Gerontol 49:M258–M263

    PubMed  CAS  Google Scholar 

  • Lafond D, Corriveau H, Hébert R, Prince F (2004) Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people. Arch Phys Med Rehabil 85:896–901

    Article  PubMed  Google Scholar 

  • Laughton CA, Slavin M, Katdare K, Nolan L, Bean JF, Kerrigan DC, Phillips E, Lipsitz LA, Collins JJ (2003) Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture 18:101–108

    Article  PubMed  Google Scholar 

  • Lin MR, Hwang HF, Hu MH, Wu HD, Wang YW, Huang FC (2004) Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and tinetti balance measures in community-dwelling older people. J Am Geriatr Soc 52:1343–1348

    Article  PubMed  Google Scholar 

  • Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear? J Am Geriatr Soc 45:313–320

    PubMed  CAS  Google Scholar 

  • Marchese R, Bove M, Abbruzzese G (2003) Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: a posturographic study. Mov Disord 18:652–658

    Article  PubMed  Google Scholar 

  • McIlroy WE, Maki BE (1996) Age-related changes in compensatory stepping in response to unpredictable perturbations. J Gerontol A Biol Sci Med Sci 51:M289–M296

    PubMed  CAS  Google Scholar 

  • Mechling RW (1986) Objective assessment of postural balance through use of the variable resistance balance board. Phys Ther 66:685–688

    PubMed  CAS  Google Scholar 

  • Murphy SL (2000) Deaths: final data for 1998. In: National Vital Statistics Reports, vol 48. National Center for Health Statistics, Hyattsville, MD

  • Niino N, Tsuzuku S, Ando F, Shimokata H (2000) Frequencies and circumstances of falls in the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA). J Epidemiol 10:S90–S94

    PubMed  CAS  Google Scholar 

  • Nordt WE III, Sachatello SA, Plotkin ES, Dintino K (1999) The effects of single-axis balance board intervention on balance parameters in the elderly. Am J Orthop 28:447–450

    PubMed  Google Scholar 

  • Overstall PW, Exton-Smith AN, Imms FJ, Johnson AL (1977) Falls in the elderly related to postural imbalance. Br Med J 1:261–264

    Article  PubMed  CAS  Google Scholar 

  • Owings TM, Grabiner MD (2004) Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J Biomech 37:935–938

    Article  PubMed  Google Scholar 

  • Owings TM, Pavol MJ, Foley KT, Grabiner MD (2000) Measures of postural stability are not predictors of recovery from large postural disturbances in healthy older adults. J Am Geriatr Soc 48:42–50

    PubMed  CAS  Google Scholar 

  • Pai YC, Patton JL (1997) Center of mass velocity-position predictions for balance control. J Biomech 30:347–354

    Article  PubMed  CAS  Google Scholar 

  • Pavol MJ, Owings TM, Foley KT, Grabiner MD (1999) Gait characteristics as risk factors for falling from trips induced in older adults. J Gerontol A Biol Sci Med Sci 54A:M583–M590

    Google Scholar 

  • Pavol MJ, Owings TM, Foley KT, Grabiner MD (2001) Mechanisms leading to a fall from an induced trip in healthy older adults. J Gerontol A Biol Sci Med Sci 56A:M428–M437

    Google Scholar 

  • Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM (1996) Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 43:956–966

    Article  PubMed  CAS  Google Scholar 

  • Redfern MS, Schumann T (1994) A model of foot placement during gait. J Biomech 27:1339–1346

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein MT, Collins JJ (1994) Visualizing the effects of filtering on chaotic signals. Comput Graph 18:587–592

    Article  Google Scholar 

  • Rosenstein MT, Collins JJ, DeLuca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134

    Article  Google Scholar 

  • Saibene F, Minetti AE (2003) Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol 88:297–316

    Article  PubMed  Google Scholar 

  • Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65:579–616

    Article  Google Scholar 

  • Savelberg HHCM, Vortenbosch MATM, Kamman EH, van de Weijer JGW, Schambardt HC (1998) Intra-stride belt speed variation affects treadmill locomotion. Gait Posture 7:26–34

    Article  PubMed  Google Scholar 

  • Schmid M, Conforto S, Camomilla V, Cappozzo A, D’Alessio T (2002) The sensitivity of posturographic parameters to acquisition settings. Med Eng Phys 24:623–631

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Obuchi S, Kamide N, Shiba Y, Okamoto M, Kakurai S (2003) Relationship with dynamic balance function during standing and walking. Am J Phys Med Rehabil 82:511–516

    Article  PubMed  Google Scholar 

  • Shumway-Cook A, Baldwin M, Polissar NL, Gruber W (1997) Predicting the probability for falls in community-dwelling older adults. Phys Ther 77:812–819

    PubMed  CAS  Google Scholar 

  • Shumway-Cook A, Brauer S, Woollacott M (2000) Predicting the probability for falls in community-dwelling older adults using the timed up and go test. Phys Ther 80:896–903

    PubMed  CAS  Google Scholar 

  • Smeesters C, Hayes WC, McMahon TA (2001a) Disturbance type and gait speed affect fall direction and impact location. J Biomech 34:309–317

    Article  CAS  Google Scholar 

  • Smeesters C, Hayes WC, McMahon TA (2001b) The threshold trip duration for which recovery is no longer possible is associated with strength and reaction time. J Biomech 34:589–595

    Article  CAS  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Warwick 1980, vol 898. Springer, Berlin Heidelberg New York, pp 366–381

  • Tanaka H, Nakashizuka M, Uetake T, Itoh T (2000) The effects of visual input on postural control mechanisms: an analysis of center-of-pressure trajectories using the auto-regressive model. J Hum Ergol (Tokyo) 29:15–25

    CAS  Google Scholar 

  • Timmer J, Häussler S, Lauk M, Lücking C-H (2000) Pathological tremors: deterministic chaos or nonlinear stochastic oscillators? Chaos 10:278–288

    Article  PubMed  Google Scholar 

  • Tinetti ME, Doucette J, Claus E, Marottoli R (1995) Risk factors for serious injury during falls by older persons in the community. J Am Geriatr Soc 43:1214–1221

    PubMed  CAS  Google Scholar 

  • Topper AK, Maki BE, Holliday PJ (1993) Are activity-based assessments of balance and gait in the elderly predictive of risk of falling and/or type of fall? J Am Geriatr Soc 41:479–487

    PubMed  CAS  Google Scholar 

  • Townsend MA (1985) Biped gait stabilization via foot placement. J Biomech 18:21–38

    Article  PubMed  CAS  Google Scholar 

  • van Ingen Schenau GJ (1980) Some fundamental aspects of the biomechanics of overground versus treadmill locomotion. Med Sci Sports Exerc 12:257–261

    PubMed  Google Scholar 

  • van Wegen EE, van Emmerik RE, Riccio GE (2002) Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci 21:61–84

    Article  PubMed  Google Scholar 

  • Wall JC, Charteris J (1980) The process of habituation to treadmill walking at different velocities. Ergonomics 23:425–435

    Article  PubMed  CAS  Google Scholar 

  • Wall JC, Charteris J (1981) A kinematic study of long-term habituation to treadmill walking. Ergonomics 24:531–542

    Article  PubMed  CAS  Google Scholar 

  • Wank V, Frick U, Schmidtbleicher D (1998) Kinematics and electromyography of lower limb muscles in overground and treadmill running. Int J Sports Med 19:455–461

    Article  PubMed  CAS  Google Scholar 

  • Warren WH, Kay BA, Yilmaz EH (1996) Visual control of posture during walking: functional specificity. J Exp Psychol Hum Percept Perform 22:818–838

    Article  PubMed  CAS  Google Scholar 

  • Warren WH, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Optic flow is used to control human walking. Nat Neurosci 4:213–216

    Article  PubMed  CAS  Google Scholar 

  • Webber A, Virji-Babul N, Edwards R, Lesperance M (2004) Stiffness and postural stability in adults with Down syndrome. Exp Brain Res 155:450–458

    Article  PubMed  CAS  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Winter DA (1995) Human balance and posture control during standing and walking. Gait Posture 3:193–214

    Article  Google Scholar 

  • Yack HJ, Berger RC (1993) Dynamic stability in the elderly: identifying a possible measure. J Gerontol Med Sci 48:M225–M230

    CAS  Google Scholar 

  • Yang JF, Winter DA, Wells RP (1990) Postural dynamics of walking in humans. Biol Cybern 62:321–330

    Article  PubMed  CAS  Google Scholar 

  • Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sports Sci Rev 17:187–230

    CAS  Google Scholar 

  • Zettel JL, McIlroy WE, Maki BE (2002) Can stabilizing features of rapid triggered stepping reactions be modulated to meet environmental constraints? Exp Brain Res 145:297–308

    Article  PubMed  Google Scholar 

Download references

acknowledgements

This study was supported by a Biomedical Engineering Research Grant (Grant # RG-02-034) from the Whitaker Foundation awarded to JBD. The authors thank Jimmy Su for assisting with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Dingwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H.G., Dingwell, J.B. A direct comparison of local dynamic stability during unperturbed standing and walking. Exp Brain Res 172, 35–48 (2006). https://doi.org/10.1007/s00221-005-0224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0224-6

Keywords

Navigation