Skip to main content
Log in

Verapamil prevents, in a dose-dependent way, the loss of ChAT-immunoreactive neurons in the cerebral cortex following lesions of the rat nucleus basalis magnocellularis

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the present study we analysed the neuroprotective effect of the L-type voltage-dependent calcium channel antagonist verapamil on cholineacetyltransferase (ChAT)-immunoreactive neurons in the cerebral cortex of rats with bilateral electrolytic lesions of the nucleus basalis magnocellularis (NBM). Treatment with verapamil (1.0, 2.5, 5.0 and 10.0 mg/kg/12 h i.p.) started 24 h after NBM lesions and lasted 8 days. Animals were sacrificed on day 21 after NBM-lesions. The bilateral NBM-lesions produced significant loss of ChAT-immunoreactive neurons in frontal, parietal and temporal cortex. Although the number of ChAT-positive neurons was significantly higher in NBM-lesioned animals treated with verapamil at a dose of 2.5, 5.0 and 10.0 mg/kg than in saline treated ones, the most significant effect was obtained at a dose of 5 mg/kg. This is, to our knowledge, the first report showing an inverted U-shape mode of neuroprotective action of the calcium antagonist verapamil, at morphological level in this particular model of brain damage. The demonstrated beneficial effect of verapamil treatment suggests that the regulation of calcium homeostasis during the early period after NBM lesions might be a possible treatment to prevent neurodegenerative processes in the rat cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD (1983) Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferease. J Comp Neurol 216:53–68

    Article  PubMed  CAS  Google Scholar 

  • Bendayan R, Lee G, Bendayan M (2002) Functional expresión and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 57:365–380

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Hayden MR (2004) Deranged neuronal calcium signalling and Huntington disease. Biochem Biophys Res Commun 322:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Bosboom JL, Stoffers D, Wolters ECh (2004) Cognitive dysfunction and dementia in Parkinson’s disease. J Neural Transm 111:1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Brzyska M, Elbaum D (2003) Dysregulation of calcium in Alzheimer’s disease. Acta Neurobiol Exp (Wars) 63:171–183

    Google Scholar 

  • Butcher LL (1995) Cholinergic neurons and networks. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, CA, pp 1003–1015

    Google Scholar 

  • Caballero-Bleda M, Redondo-Aniorte FJ, Aldeguer-Montiel A, Popović N, Popović M, Puelles L (2001) NADPH-diaphorase activity in the frontal cortex of NBM-lesioned rats treated with verapamil. Neurosci Res Commun 28:115–122

    Article  CAS  Google Scholar 

  • Casamenti F, Bracco L, Bartolini L, Pepeu G (1985) Effects of ganglioside treatment in rats with a lesion of the cholinergic forebrain nuclei. Brain Res 338:45–52

    Article  PubMed  CAS  Google Scholar 

  • Cossette P, Umbriaco D, Zamar N, Hamel E, Descarries L (1993) Recovery of choline acetyltrasnsferase activity without sprouting of the residual acetylcholine innervation in adult rat cerebral cortex after lesion of the nucleus basalis. Brain Res 630:195–206

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 19:1184–1190

    Article  Google Scholar 

  • Dubois B, Mayo W, Agid Y, Le Moal M, Simon H (1985) Profound disturbances of spontaneous and learned behaviors following lesions of the nucleus basalis magnocellularis in the rat. Brain Res 338:249–258

    Article  PubMed  CAS  Google Scholar 

  • Eckenstein FP, Baughman RW, Quinn J (1988) An anatomical study of cholinergic innervation in rat cerebral cortex. Neuroscience 25:457–474

    Article  PubMed  CAS  Google Scholar 

  • Enriquez P, Bullock R (2004) Molecular and cellular mechanisms in the pathophysiology of severe head injury. Curr Pharm Des 10:2131–2143

    Article  PubMed  CAS  Google Scholar 

  • Ezrin-Waters C, Resch L (1986) The nucleus basalis of Meynert. Can J Neurol Sci 13:8–14

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29(11):1961–1977

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4:327–388

    Article  Google Scholar 

  • Greenamyre JT, MacKenzie G, Peng TI, Stephans SE (1999) Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp 66:85–97

    PubMed  CAS  Google Scholar 

  • Harkany T, Dijkstra IM, Oosterink BJ, Horvath KM, Abraham I, Van de Zee EA, Luiten PG (2000) Increased amyloid precursor protein expression and serotonin sprouting following exctiotoxic lesion of the rat magnocelluar nucelus basalis: neuroprotection by Ca2+ antagonist nimodipine. Neuroscience 101:101–114

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Hamon B (1986) Calcium and epiletogenesis. Exp Brain Res 65:1–10

    Article  PubMed  CAS  Google Scholar 

  • Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266:97–119

    Article  PubMed  CAS  Google Scholar 

  • Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, McGeer PL, Peng F, McGeer EG (1980) Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208:1057–1059

    Article  PubMed  CAS  Google Scholar 

  • Kupina CN, Detloff MR, Bobrowski WF, Snyder BJ, Hall ED (2003) Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Exp Neurol 180(1):55–73

    Article  PubMed  CAS  Google Scholar 

  • Kurnellas MP, Nicot A, Shull GE, Elkabes S (2005) Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury. FASEB J 19:298–300

    PubMed  CAS  Google Scholar 

  • LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    Article  PubMed  CAS  Google Scholar 

  • Lam FC, Liu R, Lu P, Shapiro AB, Renoir J-M, Sharom FJ, Reiner PB (2001) β-amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Lee EHY, Lin WR (1991) Nifedipine and verapamil block the memory-facilitating effect of corticotropin-releasing factor in rats. Life Sci 48:1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Lee BY, Ban JY, Seong YH (2005) Chronic stimulation of GABAA receptor with muscimol reduces amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical cells. Neurosci Res 52:347–356

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Wainer BH, Rye DB, Mufson EJ, Mesulam M-M (1984) Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons. Neuroscience 13:341–353

    Article  PubMed  CAS  Google Scholar 

  • Luiten PGM, Douma BRK, Van der Zee EA, Nyakas C (1995) Neuroprotection against NMDA-induced cell death in rat nucleus basalis by Ca2+ antagonist nimodipine. Influence of aging and developmental drug treatment. Neurodegeneration 4:307–314

    CAS  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB (2003) Neuroprotective strategies in Parkinson’s disease : an update on progress. CNS Drugs 17:729–762

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Gary DS, Chan SL, Duan W (2001) Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer’s disease. Biochem Soc Symp 67:151–162

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Kehr AD, Wainer BH, Mesulam M-M (1987) Cortical effects of neurotoxic damage to the nucleus basalis in rats: persistent loss of extrinsic cholinergic input and lack of transsynaptic effect upon the number of somatostatin-containing, cholinesterase-positive, and cholinergic cortical neurons. Brain Res 417:385–388

    Article  PubMed  CAS  Google Scholar 

  • Murdoch I, Nicoll JA, Graham DI, Dewar D (2002) Nucleus basalis of Meynert pathology in the human brain after fatal head injury. J Neurotrauma 19:279–284

    Article  PubMed  Google Scholar 

  • Nilsson P, Hillered L, Olsson Y, Sheardown MJ, Hansen AJ (1993) Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab 13:183–192

    PubMed  CAS  Google Scholar 

  • O’Neill C, Cowburn RF, Bonkale WL, Ohm TG, Fastbom J, Carmody M, Kelliher M (2001) Dysfunctional intracellular calcium homeostasis: a central cause of neurodegeneration in Alzheimer’s disease. Biochem Soc Symp 67:177–194

    PubMed  CAS  Google Scholar 

  • Pajeva IK, Wiese M (2002) Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (hypothesis). J Med Chem 45:5671–5686

    Article  PubMed  CAS  Google Scholar 

  • Pascale A, Etcheberrigaray R (1999) Calcium alterations in Alzheimer’s disease: pathophysiology, models and therapeutic opportunities. Pharmacol Res 39:81–88

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Pepeu G, Casamenti F, Pedata F, Cosi C, Pepeu IM (1986) Are the neurochemical and behavioral changes induced by lesions of the nucleus basalis in the rat a model of Alzheimer’s disease? Prog Neuropsychopharmcol Biol Psychiatry 10:541–551

    Article  CAS  Google Scholar 

  • Pepeu G (2001) Overview and perspective on the therapy of Alzheimer’s disease from a preclinical viewpoint. Prog Neuropsychopharmacol Biol Psychiatry 25:193–209

    Article  PubMed  CAS  Google Scholar 

  • Pizzo DP, Waite JJ, Thal LJ, Winkler J (1999) Intraparenchymal infusions of 192 IgG-saporin: development of a method for selective and discrete lesioning of cholinergic basal forebrain nuclei. J Neurosci Methods 91:9–19

    Article  PubMed  CAS  Google Scholar 

  • Popović M, Jovanova-Nešić K, Popović N, Bokonjić D, Dobrić S, Rosić N, Rakić Lj (1996) Behavioral and adaptive status in an experimental model of Alzheimer’s disease in rats. Int J Neurosci 86:281–299

    PubMed  Google Scholar 

  • Popović M, Caballero-Bleda M, Popović N, Bokonjić D, Dobrić S (1997a) Neuroprotective effect of chronic verapamil treatment on cognitive and noncognitive deficits in an experimental Alzheimer’s disease in rats. Int J Neurosci 92:79–93

    Article  PubMed  Google Scholar 

  • Popović M, Popović N, Jovanova-Nešić K, Bokonjić D, Dobrić S, Kostić VS, Rosić N (1997b) Effect of physostigmine and verapamil on active avoidance in an experimental model Alzheimer’s disease. Int J Neurosci 90:87–97

    PubMed  Google Scholar 

  • Popović M, Popović N, Jovanova-Nešić K, Bokonjić D, Dobrić S, Rosić N (1997c) Open field behavior in nucleus basalis magnocellularis-lesioned rats treated with physostigmine and verapamil. Int J Neurosci 91:181–188

    PubMed  Google Scholar 

  • Popović M, Popović N, Bokonjić D, Dobrić S, Ugrešić N, Kostić VS (1998) Effect of acute physostigmine and verapamil treatment on aggressive and depressive behavior in rats with lesioned nucleus basalis magnocellularis. Neurosci Res Commun 23:13–22

    Article  Google Scholar 

  • Pringle AK (2004) In, out, shake it all about: elevation of [Ca2+]I during acute cerebral ischaemia. Cell Calcium 36:235–245

    Article  PubMed  CAS  Google Scholar 

  • Quartermain D, deSoria VG, Kwan A (2001) Calcium channel antagonists enhance retention of passive avoidance and maze learning in mice. Neurobiol Learn Mem 75:77–90

    Article  PubMed  CAS  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  • Sanchez HL, Silva LB, Portiansky EL, Goya RG, Zuccolilli GO (2003) Impact of very old age on hypothalamic dopaminergic neurons in the female rat: a morphometric study. J Comp Neurol 458:319–325

    Article  PubMed  Google Scholar 

  • Smith G (1988) Animal models of Alzheimer’s disease: experimental cholinergic denervation. Brain Res Rev 13:103–118

    Article  Google Scholar 

  • Sofroniew MV, Eckenstein F, Thoenen H, Cuello AC (1982) Topography of choline acetyltransferase-containing neurons in the forebrain of the rat. Neurosci Lett 33:7–12

    Article  PubMed  CAS  Google Scholar 

  • Steinhäuser C, Seifert G. (2002) Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 447:227–237

    Article  PubMed  Google Scholar 

  • Stuiver BT, Douma BRK, Bakker R, Nyakas C, Luiten PGM (1996) In vivo protection against NMDA-induced neurodegeneration by MK-801 and nimodipine: combined therapy and temporal course of protection. Neurodegeneration 5:153–159

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Pattee G, Parker WE Jr (2000) Role of mitochondria in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 3:185–190

    Article  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  PubMed  CAS  Google Scholar 

  • The European Study Group on nimodipine in severe head injury (1994) A multicenter trial of the efficacy of nimodipine on outcome after severe head injury. J Neurosurg 80:797–804

    Article  Google Scholar 

  • Ueda K, Shinohara S, Yagami T, Asakura K, Kawasaki K (1997) Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals. J Neurochem 68:265–271

    Article  PubMed  CAS  Google Scholar 

  • Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348:351–373

    Article  PubMed  CAS  Google Scholar 

  • Unger JW, Schmidt Y (1994) Neuropeptide Y and somatostatin in the neocortex of young and aging rats: response to nucleus basalis lesions. J Chem Neuroanat 7:25–34

    Article  PubMed  CAS  Google Scholar 

  • Unlu A, Hariharan N, Iskandar BJ (2002). Spinal cord regeneration induced by a voltage-gated calcium channel agonist. Neurol Res 24:639–642

    Article  PubMed  CAS  Google Scholar 

  • Wainer BH, Levey AI, Mufson EJ, Mesulam M-M (1984) Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase. Neurochem Int 6:163–182

    Article  CAS  PubMed  Google Scholar 

  • Wellman CL, Sengelaub DR (1991) Cortical neuroanatomical correlates of behavioural deficits produced by lesion of the basal forebrain in rats. Behav Neural Biol 56:1–24

    Article  PubMed  CAS  Google Scholar 

  • Wellman CL, Sengelaub DR (1995) Alterations in dendritic morphology of frontal cortical neurons after basal forebrain lesions in adult and aged rats. Brain Res 669:48–58

    Article  PubMed  CAS  Google Scholar 

  • Whithouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, De Long MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  Google Scholar 

  • Yagami T, Ueda K, Sakaeda T, Itoh N, Sakaguchi G, Okamura N, Hori Y, Fujimoto M (2004) Protective effects of a selective L-type voltage-sensitive calcium channel blocker, S-312-d, on neuronal cell death. Biochem Pharmacol 67:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Yasar S, Corrada M, Brookmeyer R, Kawas C (2005) Calcium channel blockers and risk of AD: the Baltimore Longitudinal Study of Aging. Neurobiol Aging 26:157–163

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZJ, Lappi DA, Wrenn CC, Milner TA, Wiley RG (1998) Selective lesion of the cholinergic basal forebrain causes a loss of cortical neuropeptide Y and somatostatin neurons. Brain Res 800:198–206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Fundación Séneca, Centro de Coordinación de la Investigación, Murcia, Spain (PB/4/FS/97) (M.C.B.), Red CIEN-Nodo Facultad de Medicina de Murcia, Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Spain and DGI2001 (L.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroljub Popović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, M., Caballero-Bleda, M., Popović, N. et al. Verapamil prevents, in a dose-dependent way, the loss of ChAT-immunoreactive neurons in the cerebral cortex following lesions of the rat nucleus basalis magnocellularis. Exp Brain Res 170, 368–375 (2006). https://doi.org/10.1007/s00221-005-0219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0219-3

Keywords

Navigation